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Wound-up phase turbulence in the complex Ginzburg-Landau equation
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We consider phase turbulent regimes with nonzero winding number in the one-dimensional complex
Ginzburg-Landau equation. We find that phase turbulent states with winding number larger than a critical one
are only transients and decay to states within a range of allowed winding numbers. The analogy with the
Eckhaus instability for nonturbulent waves is stressed. The transition from phase to defect turbulence is
interpreted as an ergodicity breaking transition that occurs when the range of allowed winding numbers
vanishes. We explain the states reached at long times in terms of three basic states, mqaamsedgriodic
states,frozen turbulencestates, andiding turbulencestates. Justification and some insight into them are
obtained from an analysis of a phase equation for nonzero winding number: Rigidly moving solutions of this
equation, which correspond to quasiperiodic and frozen turbulence states, are understood in terms of periodic
and chaotic solutions of an associated system of ordinary differential equations. A short report of some of our
results has already been publisH&d Montagneet al, Phys. Rev. Lett77, 267 (1996].
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I. INTRODUCTION the motion of bars in the bed of rivef&5], and many other

systems have been described by the CGLE in the appropriate

parameter range. We will restrict ourselves in this paper to

the one-dimensional case, that i&=A(x,t), with X
Spatiotemporal complex dynami¢$-3] is a present fo-  <[0,L]. As usual, we will use periodic boundary conditions

cus of research in nonlinear phenomena. This subject lies a§ x.

the intersection of two important lines of thought: on the one  The one-dimensional Eq1) has traveling waveTW)

hand, the generalization of the ideas of dynamical systemso|utions

theory to high-dimensional situatiofé—6] and, on the other

hand, the application of some concepts and tools developed — [Tk Zai (kx— wyd)

in the field of statistical mechanics, especially in the study of A=V1-ke '

hase transitions, to the analysis of complex nonequilibrium . .
gystems[7—9] y P d with ke[ —1,1]. When 1+c,¢,>0 there is a range of wave

umberq —kg,kg] such that TW solutions with wave num-

A. The complex Ginzburg-Landau equation
and its phase diagram

wy=Ca+(C;—Cr)k%, (2

Much effort has been devoted to the characterization o i thi i | bl Withoutsid
different dynamical states and transitions among them fo erin this fange are linearly ;ta €. Waves ut_5| €
model equations such as the complex Ginzburg-Landal IIS range display as_|d_eband_|nstabll(me Ec!<haus Insta-
equation(CGLE) [1,4,7,10-17. The CGLE is an equation ility [1,13,26). The limit of this rangekg vanishes as the
for a complex fieldA(x,t). Conveniently adimensionalized it quantity 1+ c,C, approaches zero, so that the range of stable
reads traveling waves vanishes by decreasing d;c,. The line

1+c4,c,=0 is the Benjamin-Feir-Newell 1ing27,28, la-
dA=A+(1+ic,)V2A—(1+icy)|Al?A. (1)  beled BFN in Fig. 1. Above that line, wheretk,c,<0, no
traveling wave is stable and different turbulent states exist. A

Alx t ts the slowl . : d ti major step towards the analysis of phases and phase transi-
(1) represents the siowly varying, In space and Umey;,,q ;, Eqg.(1) was the numerical construction ji,11,13
complex amplitude of the Fourier mode of zero wave num-

. . . of a phase diagram that shows which type of regular or cha-
ber when it has pecome unstablg through a Hopf blfurCat'orf!)tic behavior occurs in different regions of the parameter
[the signs used in Eq1) assume it to be supercritidalThe

CGLE is obtained universally when analyzing the dynamicsSpace[Cl’CZ]' Figure 1 has been constructed from the data

sufficiently close to the bifurcation point. In one—dimensionalIn [7’1.1'12' Above the BFN line, three types of turbulent
geometries, Eq.1) or a coupled set of sir.nilar equations with behavior are found, namelphase turbulencePT), defector
additional g,rou;.) velocity terms describe also the evolution ofamplitude turbulenceéDT), andbichgos(B(?). i
the amplitudes of Hopf-bifurcated traveling wayésl14,19 Phase_ turbulence is a state in whigk(x,t) = |Ale'?

. . : B evolves irregularly, but with its modulus always far from
Binary fluid convection[19], transversally extended lasers

. |A|=0. Since the modulus never vanishes, periodic bound-
20,21, chemical turbulencg22,23, bluff body wakeg 24], ary conditions enforce theinding numberdefined as
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to be a constant of motion, fixed by the initial conditionis  tion space characterized by a particular valuevofStates
always an integer because of periodic boundary conditionswith a different value ofv are not visited during evolution.
The quantityk_zzﬁy/L can be thought of as aawverageor In this sense the DT-PT transition would be a kind of ergod-
global wave numberTo the left of lineL, (region DT), in icity breaking transitior{10,34. DT would correspond to a
contrast, the modulus o&h becomes zero at some instants “disordered” phase and different “ordered” phases in the
and placegcalleddefectsor phase slips In such places the PT region would be classified by its value =f The idea of
phasep becomes undefined, thereby allowingo change its  using a quantity related to as an order parametgt0] has
value during evolution. BC is a region in which either PT, also been independently proposed 1].

DT, or the spatial coexistence of both can be observed de- The question of which of the scenarios above is the ap-

pending on initial conditions. It should be noted that chaoticpropriate one is not yet settled. Recent investigations seem to
states exist also below the BFN line: To the left of ling @ slightly favor the first possibility{12,15,16,3Q) The most
chaotic attractor callecspatiotemporal intermittencySTI)  powerful method in equilibrium statistical mechanics to dis-
coexists with the stable traveling wavesl]. A diagram  tinguish true phase transitions from sharp crossovers is the
qualitatively similar to Fig. 1 has also been found for careful analysis of finite-size effeci85]. Such an analysis
thg two—dlmensm_mal CGLE29,30. Despite the _relevance of has been carried out if15,30, giving some evidencéal-

v in the dynamics of the CGLE, most studies of the PTthough not definitivethat the PT state will not properly exist
regime have only considered in detail the casevef0. In jn an infinite system or, equivalently, that the line in Fig.

fagt, the. phase d@gram in Fig. 1 was constru¢zd1,13 1 approaches the BFN line as—. Here we present an-
using initial conditions that enforce=0. Apart from some  other finite-size scaling analysis, preliminarily commented
limited observation$12,13,3(}, systematic consideration of upon in[10], based on the quantity as an order parameter.
thev#0 (wound disordered phases has started only recentlyoyyr result is inconclusive, perhaps slightly favoring the van-
[10,31,32. States withv#0 are precisely the subject of the ishing of PT at large system sizes. In any case, the PT regime
present paper. is clearly observed in the largest systems considered and its
characterization is of relevance for experimental systems,
which are always finite. In this paper we characterize this PT

B. The PT-DT transition
. . . regime in a finite system, as we now outline.
Among the regimes described above, the transition be- g 4

tween PT and DT has received special attenfit0,16,31—
33]. The PT regime is robustly observed for the large but
finite sizes and for the long but finite observation times al- We show that in the PT regime there is an instability such
lowed by computer simulation, with the transition to DT ap- that a conservation law for the winding number occurs only
pearing at a quite well defined lin& { in Fig. 1) [15,30, but  for » within a finite range that depends on the point in pa-
it is unknown if the PT state would persist in the thermody-rameter space. PT states with too lafgare only transients
namic limit L—cc. One possible scenario is that in a systemand decay to states within a band of allowed winding num-
large enough and after waiting enough time, a defect wouldbers. Our results, presented in Sec. Il, allow a characteriza-
appear somewhere, thus making the conservation afily  tion of the transition from PT to DT in terms of the range of
an approximate rule. In this scenario, a PT state is a longeonservedv: As one moves in parameter space, within the
lived metastable state. In the alternative scenario, the one IRT regime and towards the DT regime, this range becomes
which PT persists even in the thermodynamic limit, the syssmaller. The transition is identified with the line in parameter
tem dynamics is restricted to the small portion of configura-space at which such a stable range vanishes. Analogies with

C. Outline of the paper
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FIG. 2. (a) Spatiotemporal evolution of the

25 ‘ ' ' phasep(x,t) coded in gray levels with time run-
¢ ning upward andx in the horizontal direction.
20 ] The lighter gray correspondg(x,t)=— and
L darker gray tog(x,t)=m. The time interval
~ 15 ] shown in the picture goes frobs= 500 time units

to 1000 time units of a total run of #@ime units.
10F . c1=2.1,c,=—0.60, and the initial condition was
a TW with »;=20 that decayed to;=14. The
: . . arrow indicates the time at whicl begins to
0 =000 4°t°° 6000 8000 change(b) Complete time evolution of the wind-
ing number for this initial condition.

a) b)

known aspects of the Eckhaus and the Benjamin-Feir instawinding number is above a critical valug, which depends
bilities are stressed. There are several types of states wiibh ¢; andc,, there is a transient period between the early
v#0 found in the PT region of parameters at late times and¢ompetition and the final state during which the winding
Sec. Il describes them in terms of thr&0] elementary number changes.
wound states. Section IV giveS some InS|ght into the states In F|g 2(8.) we show in gray levels the pha@X,t) for a
numerically obtained by explaining them in terms of solu-given run with parameters;=2.1 and c,=—0.6. The
tions of a phase equation. In addition, theoretical predictiongnce-time defects appear as dislocations in this representa-
are made for such states. The paper is closed with some fingh, | Fig. 2b) the winding number has been plotted as a
remarks. The Appendix explains our numerical method.  fynction of time. The winding number changes from the ini-
tial value v;=20 to the final valuev;=14. The discrete

Il. WINDING NUMBER INSTABILITY jumps inv are due to the integer nature of this quantity and
hey are smeared out when averages over several realizations
re performed. The resemblance to the dynamics of the Eck-
aus instability of regular waves is striking. In fact, since the
changes irv occur on top of a chaotic wave, the analogy is
stronger with the Eckhaus instability in the presence of sto-

The dynamics of states with nonzero winding number and
periodic boundary conditions has been studied numericall
in the PT region of parameters. In order to do so we hav
performed numerical integrations of E@.) at a number of
points, shown in Fig. 1. Points marked by a diamond corre ; )
spond to parameter values where intensive statistics has beSHaSt'C fluctuat|on$37,3£ﬂ. I.n. the latter case a local wave
performed. The points overmarked with a cross corresponHumber independent of position cannot be defined because of

to places where finite-size scaling was analyzed. Finally, th&°iS€; while for phase turbulent waves the disorder is gener-

plus corresponds to runs made in order to determine acc@-ted by the system dynamics. Nevertheless, in both cases the

rately the PT-DT transition linel(;). Our pseudospectral configurations can be characterized by a global wave number
integration method is described in the Appendix. Unless othsuch ask or v. The analogy is also instructive since it can be
erwise stated, the system sizeLis 512 and the spatial reso- Shown[38,39 that for the one-dimensional relaxational dy-
lution is typically 512 modes, with some runs performednamics considered if37-39 [which is related to Eq(1)

with up to 4096 modes to confirm the results. The initial With ¢,=c,=0] there is no long-range order in the system,
condition is a traveling wave, with a desired initial winding SO that there is no proper phase transition in the thermody-
numberyi , S||ght|y perturbed by a random noise of amp”_ namiCL—Too. ||m|t Despite this, fOf Iarge but finite sizes anq .
tude . By this amplitude we specifically mean that a set of/ong but finite times, sharp transitions are observed and criti-
uncorrelated Gaussian numbers of zero mean and varian€@! e€xponents and scaling functions can be consistently in-
€% was generated, one number for each collocation point idfoduced[37]. This example should make clear that even in
the numerical lattice. Only results for>0 are shown here. the case that the PT-DT transition would not exist in the

The behavior fory;<0 is completely symmetrical. thermodynamic limit, its characterization in large finite sys-
The initial evolution is well described by the linear stabil- tems is justified. The development of phase slips from PT
ity analysis around the traveling way&3,14,36,26 Typi- Waves of high enoughy; can be viewed as a kind of

cally, as seen from the evolution of the power spectrumEckhaus-like ins_tability_ for turbulent waves, whereas the
unstable sidebands initially grow. This growth stops when arfisual Eckhaus instability13] appears for regular waves.
intense competition among modes close to the initial wavd his S|m|I.ar|ty was one of the main motivations for the kind
and to the broad sidebands is established. Configurations Rf analysis that follows. o o

this early nonlinear regime are similar to the ones that would For €ach point in parameter space and initial winding
be calledriding turbulenceand described in Sec. Ill. Atlong Number considered, we have averaged over 50 independent
times the system approaches one of several possible dynanitndom realizations of the white Gaussian perturbation
cal states. In general, they can be understood in terms @dded to the initial wave. Figureda and 3b) show the
three of them, which are called basic states. When the initisiemporal evolution of this average(t) and its variancer
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FIG. 3. (a) Temporal evolution ofv(t) for four different initial
winding numbersy;=25 (solid curvgd, 20 (dotted curvg 15 0.01=2 ™5~ ' '
(dashed curye and 10 (dash-dotted curye c;=2.1 and L 6P\e
c,=—0.83 (PT regimé. (b) Winding number standard deviation 0.010F v, ,
. [ 2
0.0081- o
for c;=2.1 andc,= —0.83. Four values of the initial wind- - f
ing number ¢;=10,15,20,25 are shown. Typically, the — ~ %°%[
curve v(t) decays fromy; to a final winding numben; . 0.004
The variance displays the behavior typical of a decay from i
an unstable statp40], namely, a pronounced maximum at 0.002 1
the time of fastest variation of (t). The final value ofo L 1
gives the dispersion in the final values of the winding num- 0.000[ w s ‘ ‘ ‘ L]
bers. Although the behavior shown in Fig. 3 is very similar 0 5 10 15 20 25 30
. . . v
to that observed ifid7] for a stochastic relaxational case, the () :
scaling laws found there do not apply here. The main quali- S o
tative difference is that in a range of the sign of the aver- FIG. 5. (@) Inverse of the characteristic time for winding number

age final v is here opposite the initial one. In addition. for relaxation as a function of the initial winding number. The value of
9 PP ) ! ¢, is fixed (c;=2.1) andc, varies from near the BFN line

some of the initial winding number§.e., »;=20 in Fig. 3 (c,=—0.48) to theL, line (c,~—0.9). Different symbols corre-
v(t) is not monotonical | decaying, showing a small recoveryspond to c,=—0.6 (+), c,=—0.7 (¥), c,=—0.75 (¢),

after the fast decrease in These features are also observedc,=—0.8 (A), andc,=—0.83 (d). The inset shows the critical
for other values of{c,,c,], so that Fig. 3 is typical for winding number ¢.) as a function oft,. (b) Same aga), but the
[c1,¢2] in the PT region of Fig. 1. For comparison we show value ofc; is fixed (c,=—0.83) andc, varies from near the BFN

v(t) and its variance in Fig. 4 for the poimt,=1.6 and Ilne (c4=1.33) to c,=2.5. Different symbols correspond to
c,=—1.0, in the “bichaos” region. The main difference is ~16 (1), €1=18 1), ©1=1.96 (0), ;=21 (&), ¢,=2.3

2 - gt (D) andc;=2.5 (X). The inset shows the critical winding number
the existence of fast fluctuations inando. They are related (v.) as a function of;.

to the characteristic dynamics of the bichaos regime: The

final state depends on the initial conditions and it can corre-
spond to PT, DT, or even the coexistence of both. In the 50
realizations performed all these possibilities were found.
When DT appears, there are big fluctuations of the winding
number around'=0 that produce the wiggling on the aver-
aged value. More than 50 realizations should be performed
to smooth out such big fluctuations.
Returning to the PT parameter regirfieég. 3), the decay
of the initial state is seen to take place during a characteristic
time that depends on; . We quantify this timer as the time
for which half of the jump inv is attained.r increases as
v; decreases and there is a critical valuevgf v, such that
. s PV P P To000 no decay is observed far,<wv.. Then 7 diverges(critical
t slowing down when v; approachesv. from above. This
gives a sensible procedure to determine Figs. 5a) and
FIG. 4. (a) Temporal evolution ofy(t) for an initial winding ~ 5(b) show 1/ as a function ofy;. In Fig. 5a), c, is fixed
number ofy;=4 in the bichaos regime, =1.6 andc,= —1.0. (b) and the different symbols correspond to different values of
Winding number standard deviation C,. In Fig. 5b), c, is fixed and the symbols correspond to




56 WOUND-UP PHASE TURBULENCE IN THE COMPLE. .. 155

different values ot;. The values ofv, have been estimated 107
by extrapolating to =0 a linear fit to the points of small- .
esty; in each sequence. Motivated [§7], we have tried to
fit the divergence of- with nontrivial critical exponents, but
we have found no significant improvement over the simpler
linear fit. The values ofv, so obtained are plotted in the
insets of Figs. &) and 8b). The range of conserved winding
numbers[ — v, ,v.] is analogous to the Eckhaus range of
stable wave numbers when working below the BFN line.
v can also be obtained by directly determining the value of
v; below whichv(t) does not change in any of the realiza- ,
tions. This method can only give integer values mf, 5 ‘ S ‘
whereas the method based ogives a real number, which is 0 10 20 30 40
preferable when looking for continuous dependencegof
on system parameters. The two methods, however, give con-
sistent results within the discretization indeterminacy.

The insets of Figs. (@) and 3b) indicate a clear decrease

vy
FIG. 6. Final averaged winding numberz_,() as a function of
the initial onev; . The initial condition is a TW with winding num-

. th | of d hthe. . I In fact ber v; for c;=2.1 andc,= —0.8. The dashed line corresponds to
In v as the values at, andc, approac 1 Ine.. NTaCL  he lowest of the two Fourier modes of fastest growth in the linear
we know thatv. should be zero to the left df; since no regime as a function of; .

wave keeps its winding number constant there. This leads us

to a sensible method for determining the position of line BFN line, the Eckhaus wave-number limit, behaves as
[10], alternative to the one based on the density of defectg.~ \/e for small €, € being the difference between either
used in[7]. It consists in extrapolating the behaviormfto ¢, orc, and its value at the BFN line. From the insets in Fig.
v.=0. A simple linear fit has been used. The same method(a) or 5(b), this functional form is clearly less adequate than
to determine the lind.; has been independently introduced the linear fit used.

in [31,32. The coefficients of the linear fit are not universal:  Another interesting point to study is the dependence of
They depend on the particular path by which the linéis  the final average winding number; on the initial onew; .
apprpached. Wlth this method link; is de'ter.mlned aS  Figure 6 shows an example usimg=2.1 andc,=—0.8.
the line at which the range of conserved winding numbersrhe pehavior for other values of the parameters is qualita-
[~ ve,vc] shrinks to zero. The analogy with the ECkhaustively similar.v_f remains equal to the initial value if;<5

instability of regular waves is again remarkable: In the same; o the whole simulation time. so thag~5, a value
way that the range of Eckhaus-stable wave numbers shrinks 9 ' !

: . consistent with the one obtained from the divergencer of

to zero when approaching the BFN line from below, and plotted in the inset of Fig.(&. For v;>v., the final
the allowed v range shrinks to zero when approaching . d.p ber is al g.” ' h Ith C','t' | B
the L, line from the right. The difference is that below the va '”9_ hum er.|s. aways_sma er than the inftial one. By
BFN line the values of the wave number characterizes plandDcréasingy; a minimum onv is always observed and then
wave attractors, whereas above that linecharacterizes v tends to a constant value. Figure 6 also shows the wind-
phase-turbulent waves. In this picture, the transition lineng number associated with one of the two Fourier modes of
PT-DT appears as th&FN line associated with an fastest growth obtained from the linear stability analysis of
Eckhaus-like instability for phase turbulent waves. For thethe initial traveling wave. The one shown is the lowest; the
case of Fig. &) the PT-DT transition is located @ =2.1  other one starts at;=28 and increases further. Obviously
and c,=-0.89+0.02; andc;=2.60+0.02 andc,=—0.83 they do not determine the final state in a direct way. This is
for the case of Fig. ®). The agreement with the position of consistent with the observation mentioned above that the
the line as determined Hy,12], where system sizes similar winding number instability does not develop directly from
to ours are used, is good. For example, ég=2.1 their  the linear instability of the traveling wave, but from a later
value forL, is c,=—0.92. The points marked by a plus in nonlinear competition regime.
Fig. 1 correspond to runs used to determine the position of As stated in the Introduction, a powerful way of distin-
the transition lineL, directly as the line at which defects guishing true phase transitions from effective ones is the
appear in a long run even with=0. All these ways of analysis of finite-size scalin®5]. We have tried to analyze
determiningL, give consistent results. Below the poiRt  size effects from the point of view of as an order param-
v goes to zero when the parameters approach thelline eter. In the DT state such an analysis was performgdih
notL 4, thus confirming the known behavior that below point Egolf showed that the distribution of the values taken by the
P in Fig. 1 the line separating phase turbulence from defecever-changing winding number is a Gaussian function of
turbulence when coming from the PT side is actually width proportional toyL. This is exactly the expected be-

The use of a linear fit to locate the lihg is questionable havior for order parameters in disordered phases. In the ther-
and more complex fits have been tested. However, the simmodynamic limit the intensive version of the order parameter
plest linear fit has been found of enough quality for most ofy/L would tend to zero so that the disordered DT phase in
the situations checked. Clearly some theoretical guide ishe thermodynamic limit is characterized by a vanishing in-
needed to suggest alternative functional forms fortensive order parameter. For the PT states to be true distinct
vs(Cy,Cy). We notice that the analogous quantity below thephases, the existence of a nonvanishingsuch thatv is
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25 [T conditions described before, which is a small random Gauss-
i ] ian noise added to an unstable traveling wave. The winding

i ] number of these final states is constant and is reached after a
zor e ] transient period in which the winding number might have
i ] changed.
5L e N Figures 8, 9, and 11 show examples of the basic states
. i that we callriding PT (Fig. 8), quasiperiodic state§-ig. 9),
> ] andfrozen turbulencéFig. 11). In each figure pandh) cor-
10 N responds to a gray scale space-time plovgf(x,t), panel
i / 8 (b) shows the value of this quantity and the modulus of the
- 1 field (JA|) as a function of position at the time indicated by
an arrow in panelga) and (d), panel(c) shows the spatial
power spectruns(q,t) of A(x,t) for the same time, and
2 e C e N finally, panel (d) shows the quantityw= []3,S(q,t)|dq,

L which is a global measure of the temporal change in the
spatial power spectrum.

FIG. 7. Critical winding numberi.) as a function of the length The riding P T state(see Fig. 8 is the most familiar one
L of the system. Different symbols correspond to [12]: wiggling pulses in the gradient of the phase with a
c1=2.1 andc,=—0.8 (A) and ¢;=1.96 and,=—-0.83 (¢).  systematic drift in a direction determined by The modulus
The straight lines are linear fits to the two sets of data. of the field consists of a disordered spatial sequence of small
pulses and shocks, witA(x,t) always far from zero. The

T
R
IR

constant forf»| < is not enough. The range of stable wind- g tia| power spectru®(q) has a peak corresponding to the
ing numbers should also grow at least linearly witifor this — . . . .
range to have any macroscopic significance. The analysis ¢oPal wave numberk (associated in this case with
the growth of v, with system size has been performed at?=—1, SO thatk=2mv/L=—0.012) and a broad back-
points ¢,=2.1,c,=—0.8 andc,=1.96c,=—0.83 of pa- 9round associated with the turbulent motion “riding” on the
rameter space, determined as explained before, is plottedtraveling wave. The time evolution of shows a decay to-
in Fig. 7 for several system sizes for which the statisticalvards a fluctuating nonzero value, indicating that the power
sample of 50 runs was collected for eagh spectrum is continuously changing in time as corresponds to
There is a clear increase, close to linearppfas a func-  the turbulent state reached by the system.
tion of L, thus indicating that for this range of system sizes Quasiperiodic stategan example is shown in Fig) @an
the range of allowed winding numbers is an extensive quanP® described as the motion of equidistant pulses in the gra-
tity and then eactr is a good order parameter for classifying dient of the phase that travel at constan_t spged on top of the
well defined PT phases. It should be noted, however, that fdPackground wave. The fact that the periodicity of the pulses
the larger system size for which extensive statistics was cof@nd that of th.e supporting wave are not the same justify the
lected (=2048) data seem to show a tendency towardd'@me ofgquasiperiodic We show later that these states cor-

saturation. Thus our study should be considered as inconcl€SPond to the ones described in Réf3]. In Fig. 9a), the
sive, and larger systems sizes need to be considered. ~ Modulus|A| and the gradient of the phase clearly exhibit
uniformly traveling pulses. The spatial power spectrum

S(q) [Fig. 9Ac)] clearly shows the quasiperiodic nature of
this state: a central peak, corresponding to the dominant trav-
eling wave, with equally spaced peaks surrounding it, show-
Typical configurations of the PT state of zero winding ing the periodicity of the pulses. The peaks are not sharp
number consist of pulses in the modul|ég, acting as phase because this configuration has been obtained from a random
sinks, that travel and collide rather irregularly on top of theperturbation. The decrease Wf in Fig. 9(d) indicates that
k=0 unstable background wayhat is, a uniform oscilla- the peaks are narrowing. Its asymptotic approach to zero
tion) [7,12). The phase of these configurations strongly re-indicates that the amplitudes of the main modes reach a
sembles solutions of the Kuramoto-Shivashingk$) equa-  steady value an&(q) becomes time independent.
tion. Quantitative agreement has been found between the More perfect quasiperiodic configurations can be obtained
phase of thes=0 PT states of the CGLE and solutions of the from initial configurations that are already quasiperiodic.
KS equation near the BFN ling 6]. Figure 10 shows the quantityy for a state generated at
For states withv#0 a typical statgd12] is the one in ¢;=2.1 andc,=—0.6 from an initial traveling wave with a
which an average spedih a direction determined by the sinusoidal perturbation. The initial traveling wave had
sign of v) is added to the irregular motion of the pulses. Wev;=18 and the winding number of the sinusoidal perturba-
have found that in addition to these configurations there aron wasv=22. The traveling wave decayed to a state with
other attractors in the PT region of parameters. We have;=10 of the quasiperiodic type, cleaner than before. The
identified [10] three basic types of asymptotic states for spatial power spectrurgshown in the inset at the time indi-
#0, which we describe below. Other states can be describechted by an arrow in the main pictgrshows the typical
in terms of these basic ones. Except when explicitly statedsharacteristics of a quasiperiodic state.
all the configurations described in this section have been The frozen turbulencstate(see Fig. 11was described in
obtained by running for long times E@l) with the initial  [10]. It consists of pulses id,¢ traveling at constant speed

Ill. DIFFERENT ASYMPTOTIC STATES
IN THE PT REGION



56 WOUND-UP PHASE TURBULENCE IN THE COMPLE. .. 157

-4

-6

1078} 1

10-10

1Al

By

0.06

0.04

0.02

0.00

1.10f

1,051

0.95+-

0.90

0.2
0.1
0.0
-0.1

-0.2
-0.3

FIG. 8. (a) Spatiotemporal
evolution ofd,¢(x,t). The lighter
gray corresponds to the maximum
va<lue of d,0(x,t) and the
darker gray to the minimum. The
last 2000 time units of a run 10
time units long are shown for a

100 200 300 400 500 riding PT state atc;=2.1 and

X c,=—0.83. The initial condition
was a TW with ;=20 that de-
cayed tov;=—1 after a short

b) time. (b) Snapshot of |A(x,t)]
and d,(x,t) as a function ofx
for t=8900, which is indicated by

| an arrow in(a) and(d). (c) Spatial

| power spectruntS(q) as a func-
| tion of the wave number at the
: 1 same time =8900.(d) Time evo-
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on a traveling wave background, as in the quasiperiodic caseshere againf(x—uvt) is a complex-valued function and

but now the pulses are not equidistant from each dtbee

can differ fromwy . f andg differ only in a constant phase.

Fig. 11(b)]. The power spectrum at a given time is quite The envelopeg(x—uvt) or f(x—vt) turn out to be rather
different from the one of a quasiperiodic state. It is similarirregular functions in the preserftozen turbulencecase,
instead to the power spectrum obtained in tiding PT
state:S(q) is a broad spectrum in the sense that the inverséliscussed above. ) ) )

of the width, which gives a measure of the correlation length, After presenting the basic states, we continue addressing
is small compared to the system size. Here, howeVir,

relaxes to zero, so that the power spectrum finally stopé’

changing(thereby the namé&ozen. This behavior is an in-
dicator of the facf10], obvious from Fig. 11, that the pattern
approaches a state of rigid motion for the modulation in

modulus and gradient of the phase of the unstable backé

ground plane wave. That is, the fiedqx,t) is of the form

A(X,t) — g(X_ Ut)ei[kxfwktJra(t)],

(4)

whereg is a uniformly translating complex modulation fac-
tor. It is easy to see that configurations of the fddhhave
a time-independent spatial power spectrum. Tor34i no-

ticed in addition that the function(t) is linear int so that

the solutions are in fact of the form

A(x,t)=f(x—vt)e kxeb,

©)

whereas they are periodic in the quasiperiodic configurations

some interesting mixed states that can be described in terms
f them. Most of the configurations ending up in the frozen
turbulence or in the quasiperiodic states have long-time tran-
sients of the riding turbulence type. A decay to rigid propa-
gation occurs only at long times. There are cases in which a
different type of decay happens. For example, Fig. 12 shows
case in which the system jumps from a very strong riding
turbulence regime to another state, also of the riding turbu-
lence type, but much more regular. The quardityshown in

Fig. 12b), turns out to be a valuable tool in distinguishing
the different regimes: A superficial look at Fig. (&2 could

be easily misunderstood as indicating the approach of the
system towards a frozen turbulence state, but the lack of
decay towards zero diV identifies the final state as riding
turbulence. The arrows indicate the jump to the second state.
Figure 13 shows a state characterized by a recurrence be-
tween two different riding turbulence states, showing a kind
of temporal intermittency.
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Finally, Fig. 14 shows a riding turbulence state with zero IV. ASYMPTOTIC STATES IN TERMS
winding number. This is not, however, a typical configura- OF THE PHASE DYNAMICS

tion since usually fow=0 there is no preferred direction for The question whether or not it is possible to describe the

the pulses to drift, whereas the figure shows that in fact therg - regime of the CGLE from a closed equation for the phase
is a local drift at some places of the system. It turns out that

this state can be understood as composed by two domains 0 g.g40r . ‘ —

different local winding numbery=1 andv=—1, so that w oL S(a) 10°
globally v=0. The pulses travel either in one direction or in 1073
the other, depending on the region of the system in which o.030f

10741 17

they are. In Fig. 1éb) a snapshot of the gradient of the phase i ol ]
dye(X,t) and the phase itselp(x,t) is shown. Lines show- . . MA M
ing the average trend in the phase are plotted over the phase o.0z0f- s e s e

clearly identifying the two regions in the system. This coex-
istence of the different basic states at different places of : 1
space, or at different times as in Fig. 13, was already men- o.o10f .
tioned in[11], where it was argued to give rise to a kind of i 1
spatiotemporal intermittent behavior. 5
Given the large variety of configurations that are observed o000t
and the very long transients before a jump from one state to
another occurs, it would be difficult to conclude from nu-
merical evi.dence alone that the threg kinds of states consid— FIG. 10. (a) Time evolution ofW for a quasiperiodic state. The
ered adasicabove are true asymptotic states. Some analyti isiai  conditon is a TwW sinusoidally perturbed  for
cal insight would be desirable to be sure that these threg —» 1 andc,=—0.6. Shown in the inset is the spatial power
states are attractors of the dynamics. The next section is d€pectrumS(q) as a function of the wave number at tirtre 8900,
voted to providing such an analytical justification. indicated by an arrow in the main picture.

L ; W
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FIG. 11. Same as in Fig. 9, but
for last 2500 time units of a run
10* time units long for a frozen
turbulence state. The initial condi-
tion was a TW ofy;=12 that de-
cayed tov;=6 after a short time.
¢,=1.75 andc,= —0.8. The time
of (b) and (c) is t=8900, indi-
cated by an arrow as in previous
figures.

FIG. 12. (a) Spatiotemporal
evolution of d,¢(x,t) for a riding
turbulence state that decays onto
another one. c¢;=2.5 and
c,=—0.75. The initial condition
was a TW ofy;=20 that decayed
to vi=—2 in a short time.(b)
Time evolution ofW. The dashed
lines indicate the time interval
shown in (@) (from t;=2500 to
t,=6500 of a run 10 time units
long). The arrow indicates the
transition from one of the riding
turbulence regimes to the other
one.
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FIG. 13. (a) Spatiotemporal
evolution of 9, ¢(x,t) showing in-
termittency between riding turbu-
lence states. ¢;=2.1 and
c,=—0.83. The initial condition
is a TW of ;=1 that did not
change.(b) Time evolution ofW.
The dashed lines indicate the time
interval shown in (@) (from
t;=1000 to t,=8500 of a run
10* time units long. The arrows

: . indicate the end of a riding turbu-
2000 4000 6000 800010000 |ence regime and the beginning of
another one.

t

b)

alone has been posed by several authbs16,30,42,4B8 A NKk,0)=—ivgq+ D,q%—iD3q°—D,q*+0(q®), (9)
phase equation is obtained by considering a long-wavelength
perturbation of a plane-wave solution in the CGLE. It is

clear that this phase equation will only describe phase dywith
namics close to the homogeneous plane wéhat is, the

one with »=0) if the perturbation is made around the spa-
tially homogeneous solution. In order to get a description of
PT atv#0 the expansion should be done for a perturbation

on a traveling wave solution with wave numbdé&) different 2k2(1+c§)

from zero, Do=—(1+c4Cy) +
A=[1—K>+a(x,t)]e!llcr el 6)

Here k is taken ask=(2w/L)v. If A satisfies periodic b _2k(1+ [yt (cy+2¢o)K?] 12
boundary conditions, the same conditions applytbecause 3 (1-k?)? ’

any global phase winding is included lin(the total phase is

¢=kx+ ¢). From general symmetry arguments the general

phase equation fok+#0 should read, up to fourth order in 1
gradients, 4= 2a-Kk231C

vg=2k(c1—Cy), (10)

T (v

2(1+c5)—2k?(1+c5)(ci+6c4Cy)
drp= Qo= v gdyh— D02+ D1y(dyh) >+ D3l +K[4+ (1+¢5)(CT+1201Cp) +C5(24+20c)) I}
+ D10y h) (92h) — D4 b+ D1 o) (3h) (13
+ DA 02) 2+ Dyd Iy ) A Fop) + - - -. (7)

When Ug: D3: D12: D13: D22: D112: O, Eq (7) I’edUCES

Third, the nonlinear terms can be obtained from the follow-
ing consistency relationship: If E46) is an exact solution

to the KS equatio44,45 that is the lowest-order nonlinear ©F the CGLE, theng(x.t) satisfies the phase equation
phase equation for the case=0. For k=0, Eq. (7) was  With coefﬂqsnts depending ok. In addition, if [ y1—k;
systematically derived up to third order in gradient$36)]. +ay(x, )] ellkxr 401 g another exact solution of
An easy way of obtaining the values of all the coefficients inthe CGLE, thené,(x,t) satisfies a similar phase equa-
Eq. (7) was discussed ifi46]. First, Q, is related to the ton, but with coefficients depending dk, instead ofk.

frequency of the plane-wave solutions But this solution can be written as[y1-kj
+ay(x,t)] e/t k= lxtd1060] g0 that gy — k) x+ ¢4 (x,t) is
Qo=—w,=—Cr—(Cc;—Cy)K2. (8) also solution of the phase equation with coefficients depend-

ing onk (with different boundary conditionsBy combining
Second, the linear terms can be obtained from the eigenvaluibe two equations satisfied ki, and expanding the coeffi-
A (k,q) corresponding to the phaselike branch in the linearcients depending ok, as a power series aroukdassuming
stability analysis of the wave of wave numbewith respect  k; —k smal)) the following relationships between linear and
to perturbations of wave number[13,14,36,2& nonlinear terms are obtained:
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FIG. 14. (a) Spatiotemporal
evolution ofd,¢(x,t). The time in-
terval corresponds to 5500-7500
time units of a run 1Htime units
long for a riding PT state at
¢c,=2.1 andc,= —0.83. The initial

100

200 300 400 500 condition was a TW withy;=0
x that did not changelb) Snapshots
of ¢(x,t) andd,e(x,t) as a func-
tion of x at the timet=6980 indi-
cated by an arrow ifa and (d)
dashed lines in the graph of

¢(x,t) indicate average slopes,

that is, “local” wave numbers(c)
Spatial power spectrurg(q) as a
function of the wave number at the
same timet=6980. (d) Time evo-
lution of W. Dashed lines indicate
the time interval of(a).
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The coefficienD ,, is only obtained following the method to
higher order ink;—k. The coefficients up to third order in
gradients can be found also [i86] and approximate expres-
sions for them are given ifL3].

L s
4000 6000 8000
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d)

The traveling wave of wave numb&rbecomes unstable
when the coefficienD, becomes positive. One expects that
the first terms in the gradient expansién) give a good
description of the phase dynamics in the weakly nonlinear
regime, that isPD, positive but smallnote that for a given
k#0 this includes part of the region below the BFN line in
Fig. 1). The arguments presented[#6] imply that the rela-
tive importance of the different terms in a multiple-scale ex-
pansion in whichD, is the small parameter can be estab-
lished by consideringg~d,~D3?2. Then the dominant
terms close to the instability of waveare the ones contain-
ing g andvg. After them, the terms with coefficient3;
andD; are the most relevant. Up to this order Ed) is a
Korteweg—de Vries equatiofKdV). The terms withD,,

D4, andDq, appear at the next order. The importance of the
terms inD, andD, for a qualitatively correct description of
phase dynamics is obvious since they control the stability
properties of the wave of wave numiderThe importance of
the term with coefficienD ,, was stressed ifil3,47: If it is
large enough it can change the character of the bifurcation
from supercritical to subcritical.

The detailed comparison of the reduced dynartiigsvith
the complete CGLE phase dynamics is beyond the scope of
the present paper. The aim of this section is to use(Eq.
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just to get some understanding of the asymptotic states pré21) it is clear thats diverges wher®, vanishes, indicating
sented in Sec. lll. To this end we will use the detailed resultshat the corresponding traveling wave of wave nunibbas
available from the work of Changt al. [48]. These results become Eckhaus unstable.
are obtained for the so-called Kawahara equation The Kawahara equatio(20) has been considered in the
[49,50,47,48,5]l which is Eg. (7) with D;,=D;3 context of surface waves on fluid films falling down an in-
=D,,=D;;,,=0. The termD,, which according to Kura- clined or vertical plan¢54] and also as a simple generaliza-
moto estimation$46] is of the same order for smdl), as tion of the KS or the KdV equatiori£9,50. It has also been
the terms inD, andD,, will thus be neglected. It would be considered in the context of growth shapgs]. It reduces to
certainly necessary to consider the modifications introduced KS equation fors§=0 (or, equivalently, fork=0) when
by the termD 4, into the results of48]. This will be briefly  written for the original variablep.
discussed at the end of this section. At this point it is inter- Equation(20) has periodic, solitonlike, spatially irregular,
esting to note that, to our knowledge, the only quantitativeand spatiotemporally chaotic solutiop49—51. In fact, all
comparison of the phase dynamics with 0 obtained from  of these solutions have been analytically shown to ¢4i8L
a phase equation and from CGLE is the one foun@ih32.  All of them except the isolated solitonlike soluti¢f6] are
But the phase equation used in these references is the omtable in some parameter reginid§]. These kinds of solu-
presented irf42], in which the nonlinear terms considered tions should manifest themselvgsovided the approximate
are only those with coefficient®,; and D;5. In addition, phase description holflsn the time evolution of the phase
D;;,D;3, and the coefficients of the linear terms are consid-gradientd,¢ (=k+ d¢) of the solutions of the CGLEL) in
ered only up to first order ik. Despite these limitations, in the PT regime. The analytical results[i48] thus provide a
particular the absence of tli,, term, the phase equation is firm basis for the true existence of the numerically observed
found to reproduce well the phase dynamics of the CGLE, astates described in Sec. IlI.
agreement that degrades when the terr® jg is suppressed The detailed bifurcation analysis {#8] also gives de-
[52]. Clearly, further work is needed to establish firmly the tailed predictions for the wound states of the CGLE, within
relevance of the different terms in E€7) [53]. Our study the range of validity of the phase description. We will repro-
will be restricted to the situation off48] (that is, duce here some of the results[#8] and reinterpret them in
D,,=D,,=D;3=D;;,,=0) since no study of comparable de- terms of the gradient of the phase of CGLE solutions. Our
tail for a more complete equation is available in the litera-interest is centered in the rigidly moving train of pulsés-
ture. zen turbulence and quasiperiodic statelsserved in several
The situation of interest here is the one in which the trav-of the numerical simulations reported in Sec. Ill. They are of
eling waves are unstable against a finite band of wave nunthe form(5), and because of E419) we have
bers, so thaD,,D,>0. Making the following changes of

variables in Eq(?) with D12: D22: D13: D112: 0: U(X’ T) - H(g)' (23)
D with é=x—wv 7, v being the velocity of the train of pulses we
X=\ /D—Z(X—vgt), want to describe in units of andr. The partial differential
4

equation(20) is reduced to an ordinary differential equation
(ODE) for H(¢):

D3
™D," Hv+ 8H" +H"+4HH' —uH’ =0. (24)
DD ‘11/2 The primes denote differentiation with respecttoAfter an
2

_ _ _ H”+8H"+H'—vH+2H%=Q. (25
the Kawahara equatid9,50,47,48,5]Lis obtained
) 3 4 Q is fixed in a nontrivial way by the conditiofiH dé=0,
du=—du—4ud,u—éd,u—du, (200 which follows from our periodic boundary conditions. This
third-order ODE can be rewritten as a three-dimensional dy-

with namical system
Dj ui=u
o= — . (21 1= U2,
vD,D, ,
UZZU3,
Since¢ is periodic inx, u(y,t) is periodic iny. In addition,
ftu()(,r)d)(:O. To have some intuition of the meaning of Ug=CU;—Uy— Suz—2(Uy)?, (26)

the paramete®, its expansion at smak reads
with

5~2/2k \/ Lres +0(k® 22 i
AN N i T O D U6 =H()— 5 + %Jr%,

It should be noted that does not diverge at the BFN line, as
the expansiori22) seems to suggest, but below it. From Eq. c=8Q+v2. (27
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uy bl) H b2) FIG. 15. Schematic relation-
ship between trajectories of the
[\ /\ (\ [\ dynamical system26) in phase
space(left column and solutions
: - u(x,n=H(=x—-vr) of Eaq.
uz E=x-vt (20) (right column. (al) Fixed
X point of Eq.(26) and(a2 uniform
u, solutiqn of Eg. (20 [traveling
wave in the CGLE1)]. (b1) Peri-
odic solution(limit cycle) of Eq.
u, cl) H 2) (26) and (b2) periodic train solu-
tion of Eq. (20) [quasiperiodic so-
/L lution of the CGLE(1)]. (c1) Ho-
moclinic trajectory of Eq(26) and
: (c2) single pulse of Eq(20). (d1)
12 E=x-vt Chaotic trajectory of Eq(26) and
(d2) spatially irregular solution of
uy Eq. (20) (frozen turbulence in the
CGLB).
u3 d1) H d2)
u?2 E=x-vt
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Different qualitative behaviors in phase space of the solurationsH(£) (and thusu andd,¢) consist on nearly identical
tions of the dynamical systef@6) are related to the shape of pulses that are irregularly spaced. This corresponds to the
the solutions of Eq(24) [57]. This is illustrated in Fig. 15.  state namedrozen turbulencdor solutions of the CGLE.

We stress that all the solutions of E@4) represent uni- The detailed analysis ¢#8] is done, on the one hand, by
formly translating solutions of Eq20). No information is  following the sequence of bifurcations of the state in which
given on more complicated solutions of E@QQ). The left H is a constant and of the state in whikhis close to the
column of Fig. 15 shows the possible trajectories of the dyKdV soliton [with adequate rescaling E(R0) reduces to the
namical systen{26), while the right column shows the cor- KdV in the limit §—«]. On the other hand, the powerful
responding solution of Eq. (25 or equivalently, global theorems of Shil'nikov and their generalizatigf8—
u(x,n=H(&=x—v7) in Eq. (20). For a fixed point in Eq. 61] are used to establish the structure of the solutions of Eq.
(26) [Fig. 15a1)] we get a homogeneous solution in E2Q) (26). The results off48] relevant to our purposes can be
[Fig. 15a2] and[via Eqg.(19)] a traveling wave solution in summarized as follows.
the CGLE (1). For a periodic trajectory in Eq26) [Fig.
15(b1)] we get a train of periodic pulses in the solution of (i) Periodic solutions of Eq(26) exist for all values of
Eg. (20) [Fig. 15b2)] and a quasiperiodic solution in CGLE & provided |c|>|8]. They are organized in a variety of
(2). An homoclinic trajectory in Eq(26) [Fig. 15c1)] cor-  branches. Solutions in the same branch differ by their peri-
responds to a single pulse solution in E20) [Fig. 15c2)].  odicity and each branch ends in a different kind of solitary-
Finally, for a chaotic trajectory in Eq26) [Fig. 15d1)] we  wave solution(infinite spatial periogl The shape of the dif-
have an irregular solutioH (&) that corresponds to a rigidly ferent solitary wave solutions characterizes the different
traveling spatially irregular solution of EQq(20) [Fig.  branches.
15(d2)]. The chaotic solutions of Eq(26) are of the (i) For|s|=1.1 only one of the branches of periodic so-
Shil'nikov type[48]. This means that the disordered configu- lutions (the main branch remains.
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(i) Chaotic solutions to EQ.(26) exist only for possibility is that the instability of the=0 plane-wave at-

| 6|=0.84. tractor at the BFN line has consequences of a global charac-
(iv) Periodic solutions in the main branch with its wave ter beyond the validity of the phase description.

number within a given range are linearly stable for &llA The above predictions imply that the more promising

more precise determination of the range of stable wave nuneone for obtaining quasiperiodic solutions starting from ran-

bers for larges was performed if47]. dom perturbations on a traveling wave of given winding
(v) In addition to the periodic solutions there are alsonumber is for parameter values close to and alioye O or

spatiotemporal chaotic attractors for all for high winding number |(5|>3). In any case, no frozen

(vi) If |8]>1.1, only two of these strange attractors re-turbulence should be observed in that zone.
main. For|8|>3 their basin of attraction seems to be much Some qualitative aspects of the conclusions above have
smaller than the one of the periodic solutions. been shown to be correct. In particular Torcini and collabo-

rators [31,32 have shown that the average maximal

Results(i)—(iii ) can be read off from Fig. 3 of Refid8] and  Lyapunov exponent, quantifying the proportion of initial
refer to analytical results of rigidly traveling wavea;)—(vi) ~ conditions that fall into the spatiotemporal chaotic strange
correspond to numerical and analytical results in the samattractors, is a decreasing function mf
reference without the restriction to rigidly traveling waves. Our numerical solutions also agree with the prediction

Expression(21) with Egs. (10)—(18) gives the relation that quasiperiodic solutions show up more easily for small
betweens and the parameters of the CGLE| =« corre- D,. However, their basin of attraction appears to be much
sponds in Fig. 1 to the line at which the wave of wave num-smaller than that implied by the conclusions of the phase
berk becomes Eckhaus unstable. It is approximately paralledlescription since it is reached with very low probability from
and below the BFN line. The other lines of constantfor  our initial conditions. This is especially true above the BFN
fixed k, are also approximately parallel to the BFN line, andline. The reason for this is probably the effect of the ne-
decreasingd| corresponds to entering into the PT region andglected termD,,, which is known to reduce the range of
going deep into it. All these lines concentrate on the BFNstable periodic solution§47] and even to eliminate it by
line ask approaches zero: Fdt=0, =0 except on the making the bifurcation subcritic4ll3]. Above the BFN line
BFN line 1+c;c,=0, whereé is undefined. We now re- the attractor that we observe more frequently at high winding
phrase the conclusions above in terms of the three basigumber from our initial conditions is the frozen turbulent
asymptotic states of the CGLE in the PT regime. They willstate.
be valid as long as the phase descripti26) remains accu- A more detailed analysis of the predictions above would
rate. be desirable. This is, however, beyond the scope of the

(i) There are PT solutions of the quasiperiodic type for allpresent paper since a detailed theoretical analysis of the glo-
values of the parametefas long as the phase description bal properties of the phase space for the equation containing
remains valid. Bounds on their velocity can be obtained in the termD ;, would probably be needed beforehand. A prom-
principle, but this is nontrivial sinc® is only known in an  ising alternative can be the study of the exact equation for
implicit way. f(x—uvt) in Eq. (5) obtained in[32].

(i) Increasing 8| by approaching the Eckhaus instability
for a givenk (D,=0) or by increasing the winding number

. L . V. FINAL REMARKS
reduces the variety of quasiperiodic solutions.

(ii ) Frozen turbulence solutions exist only fai|=<0.84, One-dimensional wound-up phase turbulence has been
which is far enough from the linB,=0 or for small enough shown to be much richer than the case 0. The main re-
winding number. sults reported here, that is, the existence of winding number

(iv) There are linearly stable solutions in the main quasiinstability for phase turbulent waves, the identification of the
periodic branch for all values of the parameters. PT-DT transition with the vanishing of the range of stable

(v) There are also riding turbulence attractors for all val-winding numbers, and the coexistence of different kinds of
ues of parameters. PT attractors, should in principle be observed in systems for

(vi) For |8]>3, that is, at high winding number or close which PT and DT regimes above a Hopf bifurcation are
enough to lineD,=0, the quasiperiodic solutions have a known to exist{24]. To our knowledge, there are, so far, no
basin of attraction larger than the riding turbulence ones. observations of the ordered PT states described above. There

A general feature of these conclusions is that the imporare, however, experimental observations of what seems to be
tant quantity isD,, which is the distance in parameter spacean Eckhaus-like instability for irregular waves in the printer
from the line at which thé wave became Eckhaus unstable. instability system[62]. This suggests that the concept of a
This line is below the BFN line fork#0. Thus, not only turbulent Eckhaus instability can be of interest beyond the
traveling waves, but also quasiperiodic, frozen turbulencerange of situations described by the CGLE. A point about
and riding turbulence attractors should exist below the BFNwvhich our study is inconclusive is the question of the exis-
line for k#0. In practice it is relatively easy to find quasi- tence of PT in the thermodynamic limit. The identification of
periodic states below but close to the BFN line, but we haver as an order parameter identifies the continuation of Fig. 7
been unable to find the other two states so far. The difficultytowards larger system sizes as a way of resolving the ques-
in finding riding turbulence states can be a consequence aion. It should be noted, however, that although in common
the small range of winding numbers for which they are stablgphase transitions a linear scaling of the order parameter with
(lv|=L|k|/l2m<v;) so that the observability condition system size is usual, phase transitiéas the present ohén
| 8| <3 immediately brings us above the BFN line. Anotherwhich ergodicity, rather than a simple symmetry of the dis-
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ordered phase, is broken generate usually a number of or- e%qdt — g~ aqdt 5
dered phases growing exponentially withnot just linearly Dy (t) — . To(t ) (A4)
[34,63. In this direction we note that the results of Sec. I q

show that the states of a givenare not reallypure phases
but different attractors are possible for given An order
parameter more refined thanshould be able to distinguish
between the different attractors and the result of an exponen-
tially large number of phases at larjewould probably be
recovered. The results presented in Sec. IV give a justifica-
tion for the existence of the several wound states observed +0(at%), (A5)
and specific predictions have been formulated on the basis of

previous analytical and numerical results. Further work isyhere expressions of the forif(n) are abbreviations for
needed, however, to clarify the importance of the differentf - st). ExpressionA5) is the so-called slaved leapfrog

Substituting this result into EA3), we get

1_e—2aq§t
— a—2aydt
Ag(n+1)=e %A (n—1)+ a—q(l)q(n)

terms in Eq.(7) and the validity of a phase description. of Frischet al. [66]. To use this scheme the values of the
field at the first two time steps are required. Nevertheless,
ACKNOWLEDGMENTS this scheme alone is unstable for the CGLE. This is not ex-

H plicitly stated in the literature and probably a corrective al-

"gorithm is also applied. Obtaining such a correction is
straightforward: Following steps similar to the ones before,
8ne derives the auxiliary expression
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(A6)

APPENDIX: NUMERICAL INTEGRATION SCHEME

The ti luti fth lex ficldi(x t biected The numerical method we use, which we will refer to as
€ ime evolution of the complex Tie (x,1) subjecte the two-step method, provides the time evolution of the field
to periodic boundary conditions is obtained numerically fromfrom a given initial condition by using Eq&A5) and(A6) as
the integration of the CGLE in Fourier space. The method i%ollows?(i) Dy(n—1) is calculz;/ted frgnAz(ﬁ—l) by going

pseudospectral and second—_order accurate in time. Each Fot%'real spacelii) Eq. (A6) is used to obtain an approximation
rier modeA, evolves according to

to Ay(n), (iii) the nonlinear termby(n) is now calculated
TAG(1) = — agAg(t) + D (1), (A1) from this A,(n) by going to real space, ar@) the field at
stepn+1 is calculated from Eq(A5) by usingAy(n—1)
wherea, is (1+ic;)g*— 1 and® is the amplitude of mode and ®4(n). At each iteration, we getg(n+1) from
q of the nonlinear term in the CGLE. At any time, the am- Aq(n—1) and the time advances by2 Note that the total
plitudes @, are calculated by taking the inverse Fouriererror is O(6t%), despite that the error in the intermediate
transformA(x,t) of A;, computing the nonlinear term in Vvalue obtained with E(A6) is O(6t?). The method can be
real space, and then calculating the direct Fourier transforrgasily made exact for plane wavé®) of wave numberk
of this term. A standard fast Fourier transform subroutine igand then more precisely for solutions close to this traveling
used for this purposgs4]. wave) simply by replacing the nonlinear terdn, in Eq. (A1)
Equation(Al) is integrated numerically in time by using a by ®+(1+icy)(1— k2)Aq and subtracting the correspond-
method similar to the so-called two-step metH&®]. For  ing term froma,. We have not implemented this improve-
convenience in the notation, the time step is defined hereent because we were mostly interested in solutions chang-
such that the time is increased byt2at each iteration. ing their winding number, so that they are not close to the
When a large number of modgsare used, the linear time Ssame traveling wave all the time.
scalesa, can take a wide range of values. A way of circum- ~ The number of Fourier modes depends on the space dis-
venting this stiffness problem is to treat exactly the linearcretization. We have usedix=1 and usuallyN=512. The
terms by using the formal solution time step was usuallgt=26t=0.01. The accuracy of the
numerical method has been estimated by integrating plane-
wave solutions. The amplitude and frequency of the field
obtained numerically will differ slightly from the exact am-
plitude and frequency, not only due to roundoff errors, but
From this the following relationship is found: also due to the fact that the method is approximate. The
method has been tested by using a stationary unstable trav-
Aq(t+6t)  Ag(t—ot) T ws eling wave of wave numbek as the initial condition. The
e g gag € ¢ fti&QDq(s)e ads. numerical errors will eventually move the solution away
(A3) from the plane-wave unstable state. To be precise, in a typi-
cal run with ¢c;,=-1.0 andc,=2.4, with dt=0.01 and
The Taylor expansion ofb,(s) arounds=t for small 6t k=0.123, the amplitude was kept constant to the fifth deci-
gives an expression for the right-hand side of E&): mal digit during ~8000 iterations. In comparison, when a

Aq(t)=e“qt(Aq(to)eaqt0+ ftCIDq(s)e“qus). (A2)
to
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dt=0.01 fits the exact value up to the fourth decimal digit.

to the traveling wave, the modulus is maintained equal to its The integration method introduced here has also been ap-

steady valudup to the fifth decimalduring 1500 iterations.
The frequencyw, determined numerically by using

plied successfully to the case of two coupled equations or,
equivalently, a vectorial CGLEL8,67).
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