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Wound-up phase turbulence in the complex Ginzburg-Landau equation
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We consider phase turbulent regimes with nonzero winding number in the one-dimensional complex
Ginzburg-Landau equation. We find that phase turbulent states with winding number larger than a critical one
are only transients and decay to states within a range of allowed winding numbers. The analogy with the
Eckhaus instability for nonturbulent waves is stressed. The transition from phase to defect turbulence is
interpreted as an ergodicity breaking transition that occurs when the range of allowed winding numbers
vanishes. We explain the states reached at long times in terms of three basic states, namely,quasiperiodic
states,frozen turbulencestates, andriding turbulencestates. Justification and some insight into them are
obtained from an analysis of a phase equation for nonzero winding number: Rigidly moving solutions of this
equation, which correspond to quasiperiodic and frozen turbulence states, are understood in terms of periodic
and chaotic solutions of an associated system of ordinary differential equations. A short report of some of our
results has already been published@R. Montagneet al., Phys. Rev. Lett.77, 267 ~1996!#.
@S1063-651X~97!09706-7#
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I. INTRODUCTION

A. The complex Ginzburg-Landau equation
and its phase diagram

Spatiotemporal complex dynamics@1–3# is a present fo-
cus of research in nonlinear phenomena. This subject lie
the intersection of two important lines of thought: on the o
hand, the generalization of the ideas of dynamical syste
theory to high-dimensional situations@4–6# and, on the other
hand, the application of some concepts and tools develo
in the field of statistical mechanics, especially in the study
phase transitions, to the analysis of complex nonequilibri
systems@7–9#.

Much effort has been devoted to the characterization
different dynamical states and transitions among them
model equations such as the complex Ginzburg-Lan
equation~CGLE! @1,4,7,10–17#. The CGLE is an equation
for a complex fieldA(x,t). Conveniently adimensionalized
reads

] tA5A1~11 ic1!¹
2A2~11 ic2!uAu2A. ~1!

A(x,t) represents the slowly varying, in space and tim
complex amplitude of the Fourier mode of zero wave nu
ber when it has become unstable through a Hopf bifurca
@the signs used in Eq.~1! assume it to be supercritical#. The
CGLE is obtained universally when analyzing the dynam
sufficiently close to the bifurcation point. In one-dimension
geometries, Eq.~1! or a coupled set of similar equations wi
additional group velocity terms describe also the evolution
the amplitudes of Hopf-bifurcated traveling waves@1,14,18#.
Binary fluid convection@19#, transversally extended lase
@20,21#, chemical turbulence@22,23#, bluff body wakes@24#,
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561063-651X/97/56~1!/151~17!/$10.00
at
e
s

ed
f

f
r
u

,
-
n

s
l

f

the motion of bars in the bed of rivers@25#, and many other
systems have been described by the CGLE in the approp
parameter range. We will restrict ourselves in this paper
the one-dimensional case, that is,A5A(x,t), with x
P@0,L#. As usual, we will use periodic boundary condition
in x.

The one-dimensional Eq.~1! has traveling wave~TW!
solutions

Ak5A12k2ei ~kx2vkt !, vk5c21~c12c2!k
2, ~2!

with kP@21,1#. When 11c1c2.0 there is a range of wave
numbers@2kE ,kE# such that TW solutions with wave num
ber in this range are linearly stable. Waves withk outside
this range display a sideband instability~the Eckhaus insta-
bility @1,13,26#!. The limit of this rangekE vanishes as the
quantity 11c1c2 approaches zero, so that the range of sta
traveling waves vanishes by decreasing 11c1c2. The line
11c1c250 is the Benjamin-Feir-Newell line@27,28#, la-
beled BFN in Fig. 1. Above that line, where 11c1c2,0, no
traveling wave is stable and different turbulent states exis
major step towards the analysis of phases and phase tr
tions in Eq.~1! was the numerical construction in@7,11,12#
of a phase diagram that shows which type of regular or c
otic behavior occurs in different regions of the parame
space@c1 ,c2#. Figure 1 has been constructed from the d
in @7,11,12#. Above the BFN line, three types of turbulen
behavior are found, namely,phase turbulence~PT!, defector
amplitude turbulence~DT!, andbichaos~BC!.

Phase turbulence is a state in whichA(x,t)5uAueiw
evolves irregularly, but with its modulus always far fro
uAu50. Since the modulus never vanishes, periodic bou
ary conditions enforce thewinding number, defined as

n[
1

2pE0
L

]xw dx, ~3!
151 © 1997 The American Physical Society
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152 56R. MONTAGNE et al.
FIG. 1. Regions of the parameter spa
@c1 ,c2# for the CGLE displaying different kinds
of regular and chaotic behavior. LinesL1 ,L3
were determined in@7,11,12#. See the text in Sec
II for the explanation of the different symbols.
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to be a constant of motion, fixed by the initial condition.n is
always an integer because of periodic boundary conditio
The quantityk̄[2pn/L can be thought of as anaverageor
global wave number. To the left of lineL1 ~region DT!, in
contrast, the modulus ofA becomes zero at some instan
and places~calleddefectsor phase slips!. In such places the
phasew becomes undefined, thereby allowingn to change its
value during evolution. BC is a region in which either P
DT, or the spatial coexistence of both can be observed
pending on initial conditions. It should be noted that chao
states exist also below the BFN line: To the left of lineL2, a
chaotic attractor calledspatiotemporal intermittency~STI!
coexists with the stable traveling waves@11#. A diagram
qualitatively similar to Fig. 1 has also been found f
the two-dimensional CGLE@29,30#. Despite the relevance o
n in the dynamics of the CGLE, most studies of the P
regime have only considered in detail the case ofn50. In
fact, the phase diagram in Fig. 1 was constructed@7,11,12#
using initial conditions that enforcen50. Apart from some
limited observations@12,13,30#, systematic consideration o
thenÞ0 ~wound! disordered phases has started only rece
@10,31,32#. States withnÞ0 are precisely the subject of th
present paper.

B. The PT-DT transition

Among the regimes described above, the transition
tween PT and DT has received special attention@7,10,16,31–
33#. The PT regime is robustly observed for the large b
finite sizes and for the long but finite observation times
lowed by computer simulation, with the transition to DT a
pearing at a quite well defined line (L1 in Fig. 1! @15,30#, but
it is unknown if the PT state would persist in the thermod
namic limit L→`. One possible scenario is that in a syste
large enough and after waiting enough time, a defect wo
appear somewhere, thus making the conservation ofn only
an approximate rule. In this scenario, a PT state is a lo
lived metastable state. In the alternative scenario, the on
which PT persists even in the thermodynamic limit, the s
tem dynamics is restricted to the small portion of configu
s.
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tion space characterized by a particular value ofn. States
with a different value ofn are not visited during evolution
In this sense the DT-PT transition would be a kind of ergo
icity breaking transition@10,34#. DT would correspond to a
‘‘disordered’’ phase and different ‘‘ordered’’ phases in th
PT region would be classified by its value ofn. The idea of
using a quantity related ton as an order parameter@10# has
also been independently proposed in@31#.

The question of which of the scenarios above is the
propriate one is not yet settled. Recent investigations see
slightly favor the first possibility@12,15,16,30#. The most
powerful method in equilibrium statistical mechanics to d
tinguish true phase transitions from sharp crossovers is
careful analysis of finite-size effects@35#. Such an analysis
has been carried out in@15,30#, giving some evidence~al-
though not definitive! that the PT state will not properly exis
in an infinite system or, equivalently, that theL1 line in Fig.
1 approaches the BFN line asL→`. Here we present an
other finite-size scaling analysis, preliminarily comment
upon in@10#, based on the quantityn as an order paramete
Our result is inconclusive, perhaps slightly favoring the va
ishing of PT at large system sizes. In any case, the PT reg
is clearly observed in the largest systems considered an
characterization is of relevance for experimental syste
which are always finite. In this paper we characterize this
regime in a finite system, as we now outline.

C. Outline of the paper

We show that in the PT regime there is an instability su
that a conservation law for the winding number occurs o
for n within a finite range that depends on the point in p
rameter space. PT states with too largeunu are only transients
and decay to states within a band of allowed winding nu
bers. Our results, presented in Sec. II, allow a character
tion of the transition from PT to DT in terms of the range
conservedn: As one moves in parameter space, within t
PT regime and towards the DT regime, this range becom
smaller. The transition is identified with the line in parame
space at which such a stable range vanishes. Analogies
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56 153WOUND-UP PHASE TURBULENCE IN THE COMPLEX . . .
FIG. 2. ~a! Spatiotemporal evolution of the
phasew(x,t) coded in gray levels with time run
ning upward andx in the horizontal direction.
The lighter gray correspondsw(x,t)52p and
darker gray tow(x,t)5p. The time interval
shown in the picture goes fromt5500 time units
to 1000 time units of a total run of 104 time units.
c152.1,c2520.60, and the initial condition was
a TW with n i520 that decayed ton f514. The
arrow indicates the time at whichn begins to
change.~b! Complete time evolution of the wind
ing number for this initial condition.
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known aspects of the Eckhaus and the Benjamin-Feir in
bilities are stressed. There are several types of states
nÞ0 found in the PT region of parameters at late times a
Sec. III describes them in terms of three@10# elementary
woundstates. Section IV gives some insight into the sta
numerically obtained by explaining them in terms of so
tions of a phase equation. In addition, theoretical predicti
are made for such states. The paper is closed with some
remarks. The Appendix explains our numerical method.

II. WINDING NUMBER INSTABILITY

The dynamics of states with nonzero winding number a
periodic boundary conditions has been studied numeric
in the PT region of parameters. In order to do so we h
performed numerical integrations of Eq.~1! at a number of
points, shown in Fig. 1. Points marked by a diamond cor
spond to parameter values where intensive statistics has
performed. The points overmarked with a cross corresp
to places where finite-size scaling was analyzed. Finally,
plus corresponds to runs made in order to determine a
rately the PT-DT transition line (L1). Our pseudospectra
integration method is described in the Appendix. Unless o
erwise stated, the system size isL5512 and the spatial reso
lution is typically 512 modes, with some runs perform
with up to 4096 modes to confirm the results. The init
condition is a traveling wave, with a desired initial windin
numbern i , slightly perturbed by a random noise of amp
tudee. By this amplitude we specifically mean that a set
uncorrelated Gaussian numbers of zero mean and vari
e2 was generated, one number for each collocation poin
the numerical lattice. Only results forn i.0 are shown here
The behavior forn i,0 is completely symmetrical.

The initial evolution is well described by the linear stab
ity analysis around the traveling wave@13,14,36,26#. Typi-
cally, as seen from the evolution of the power spectru
unstable sidebands initially grow. This growth stops when
intense competition among modes close to the initial w
and to the broad sidebands is established. Configuration
this early nonlinear regime are similar to the ones that wo
be calledriding turbulenceand described in Sec. III. At long
times the system approaches one of several possible dyn
cal states. In general, they can be understood in term
three of them, which are called basic states. When the in
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winding number is above a critical valuenc , which depends
on c1 and c2, there is a transient period between the ea
competition and the final state during which the windi
number changes.

In Fig. 2~a! we show in gray levels the phasew(x,t) for a
given run with parametersc152.1 and c2520.6. The
space-time defects appear as dislocations in this repres
tion. In Fig. 2~b! the winding number has been plotted as
function of time. The winding number changes from the in
tial value n i520 to the final valuen f514. The discrete
jumps inn are due to the integer nature of this quantity a
they are smeared out when averages over several realiza
are performed. The resemblance to the dynamics of the E
haus instability of regular waves is striking. In fact, since t
changes inn occur on top of a chaotic wave, the analogy
stronger with the Eckhaus instability in the presence of s
chastic fluctuations@37,38#. In the latter case a local wav
number independent of position cannot be defined becaus
noise, while for phase turbulent waves the disorder is gen
ated by the system dynamics. Nevertheless, in both case
configurations can be characterized by a global wave num
such ask̄ or n. The analogy is also instructive since it can
shown@38,39# that for the one-dimensional relaxational d
namics considered in@37–39# @which is related to Eq.~1!
with c15c250# there is no long-range order in the syste
so that there is no proper phase transition in the thermo
namicL→` limit. Despite this, for large but finite sizes an
long but finite times, sharp transitions are observed and c
cal exponents and scaling functions can be consistently
troduced@37#. This example should make clear that even
the case that the PT-DT transition would not exist in t
thermodynamic limit, its characterization in large finite sy
tems is justified. The development of phase slips from
waves of high enoughn i can be viewed as a kind o
Eckhaus-like instability for turbulent waves, whereas t
usual Eckhaus instability@13# appears for regular waves
This similarity was one of the main motivations for the kin
of analysis that follows.

For each point in parameter space and initial windi
number considered, we have averaged over 50 indepen
random realizations of the white Gaussian perturbat
added to the initial wave. Figures 3~a! and 3~b! show the
temporal evolution of this averagen̄ (t) and its variances
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for c152.1 andc2520.83. Four values of the initial wind
ing number (n i510,15,20,25! are shown. Typically, the
curve n̄ (t) decays fromn i to a final winding numbern f .
The variance displays the behavior typical of a decay fr
an unstable state@40#, namely, a pronounced maximum
the time of fastest variation ofn̄ (t). The final value ofs
gives the dispersion in the final values of the winding nu
bers. Although the behavior shown in Fig. 3 is very simi
to that observed in@37# for a stochastic relaxational case, th
scaling laws found there do not apply here. The main qu
tative difference is that in a range ofn i the sign of the aver-
age final n̄ is here opposite the initial one. In addition, fo
some of the initial winding numbers~i.e., n i520 in Fig. 3!
n̄ (t) is not monotonical decaying, showing a small recove
after the fast decrease inn̄ . These features are also observ
for other values of@c1 ,c2#, so that Fig. 3 is typical for
@c1 ,c2# in the PT region of Fig. 1. For comparison we sho
n̄ (t) and its variance in Fig. 4 for the pointc151.6 and
c2521.0, in the ‘‘bichaos’’ region. The main difference
the existence of fast fluctuations inn̄ ands. They are related
to the characteristic dynamics of the bichaos regime: T

FIG. 3. ~a! Temporal evolution ofn̄ (t) for four different initial
winding numbersn i525 ~solid curve!, 20 ~dotted curve!, 15
~dashed curve! and 10 ~dash-dotted curve!. c152.1 and
c2520.83 ~PT regime!. ~b! Winding number standard deviatio
s.

FIG. 4. ~a! Temporal evolution ofn̄ (t) for an initial winding
number ofn i54 in the bichaos regime.c151.6 andc2521.0. ~b!
Winding number standard deviations.
-
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final state depends on the initial conditions and it can co
spond to PT, DT, or even the coexistence of both. In the
realizations performed all these possibilities were fou
When DT appears, there are big fluctuations of the wind
number aroundn50 that produce the wiggling on the ave
aged value. More than 50 realizations should be perform
to smooth out such big fluctuations.

Returning to the PT parameter regime~Fig. 3!, the decay
of the initial state is seen to take place during a character
time that depends onn i . We quantify this timet as the time
for which half of the jump inn is attained.t increases as
n i decreases and there is a critical value ofn i , nc , such that
no decay is observed forn i,nc . Then t diverges~critical
slowing down! when n i approachesnc from above. This
gives a sensible procedure to determinenc : Figs. 5~a! and
5~b! show 1/t as a function ofn i . In Fig. 5~a!, c1 is fixed
and the different symbols correspond to different values
c2. In Fig. 5~b!, c2 is fixed and the symbols correspond

FIG. 5. ~a! Inverse of the characteristic time for winding numb
relaxation as a function of the initial winding number. The value
c1 is fixed (c152.1) and c2 varies from near the BFN line
(c2.20.48) to theL1 line (c2'20.9). Different symbols corre-
spond to c2520.6 (1), c2520.7 (* ), c2520.75 (L),
c2520.8 (n), andc2520.83 (h). The inset shows the critica
winding number (nc) as a function ofc2. ~b! Same as~a!, but the
value ofc2 is fixed (c2520.83) andc1 varies from near the BFN
line (c1.1.33) to c152.5. Different symbols correspond t
c151.6 (1), c151.8 (* ), c151.96 (L), c152.1 (n), c152.3
(h), andc152.5 (3). The inset shows the critical winding numbe
(nc) as a function ofc1.
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56 155WOUND-UP PHASE TURBULENCE IN THE COMPLEX . . .
different values ofc1. The values ofnc have been estimate
by extrapolating to 1/t50 a linear fit to the points of small
estn i in each sequence. Motivated by@37#, we have tried to
fit the divergence oft with nontrivial critical exponents, bu
we have found no significant improvement over the simp
linear fit. The values ofnc so obtained are plotted in th
insets of Figs. 5~a! and 5~b!. The range of conserved windin
numbers@2nc ,nc# is analogous to the Eckhaus range
stable wave numbers when working below the BFN lin
nc can also be obtained by directly determining the value
n i below whichn(t) does not change in any of the realiz
tions. This method can only give integer values ofnc ,
whereas the method based ont gives a real number, which i
preferable when looking for continuous dependences onc
on system parameters. The two methods, however, give
sistent results within the discretization indeterminacy.

The insets of Figs. 5~a! and 5~b! indicate a clear decreas
in nc as the values ofc1 andc2 approach theL1 line. In fact,
we know thatnc should be zero to the left ofL1 since no
wave keeps its winding number constant there. This lead
to a sensible method for determining the position of lineL1
@10#, alternative to the one based on the density of defe
used in@7#. It consists in extrapolating the behavior ofnc to
nc50. A simple linear fit has been used. The same met
to determine the lineL1 has been independently introduce
in @31,32#. The coefficients of the linear fit are not universa
They depend on the particular path by which the lineL1 is
approached. With this method lineL1 is determined as
the line at which the range of conserved winding numb
@2nc ,nc# shrinks to zero. The analogy with the Eckha
instability of regular waves is again remarkable: In the sa
way that the range of Eckhaus-stable wave numbers shr
to zero when approaching the BFN line from belo
the allowed n range shrinks to zero when approachi
the L1 line from the right. The difference is that below th
BFN line the values of the wave number characterizes pla
wave attractors, whereas above that line,n characterizes
phase-turbulent waves. In this picture, the transition l
PT–DT appears as theBFN line associated with an
Eckhaus-like instability for phase turbulent waves. For
case of Fig. 5~a! the PT-DT transition is located atc152.1
and c2520.8960.02; andc152.6060.02 andc2520.83
for the case of Fig. 5~b!. The agreement with the position o
the line as determined by@7,12#, where system sizes simila
to ours are used, is good. For example, forc152.1 their
value forL1 is c2520.92. The points marked by a plus
Fig. 1 correspond to runs used to determine the position
the transition lineL1 directly as the line at which defect
appear in a long run even withn50. All these ways of
determiningL1 give consistent results. Below the pointP,
nc goes to zero when the parameters approach the lineL3,
not L1, thus confirming the known behavior that below po
P in Fig. 1 the line separating phase turbulence from de
turbulence when coming from the PT side is actuallyL3.

The use of a linear fit to locate the lineL1 is questionable
and more complex fits have been tested. However, the
plest linear fit has been found of enough quality for most
the situations checked. Clearly some theoretical guide
needed to suggest alternative functional forms
nc(c1 ,c2). We notice that the analogous quantity below t
r
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BFN line, the Eckhaus wave-number limit, behaves
qE;Ae for small e, e being the difference between eithe
c1 or c2 and its value at the BFN line. From the insets in F
5~a! or 5~b!, this functional form is clearly less adequate th
the linear fit used.

Another interesting point to study is the dependence
the final average winding numbern̄ f on the initial onen i .
Figure 6 shows an example usingc152.1 andc2520.8.
The behavior for other values of the parameters is qua
tively similar. n̄ f remains equal to the initial value ifn i<5
during the whole simulation time, so thatnc'5, a value
consistent with the one obtained from the divergence ot
and plotted in the inset of Fig. 5~a!. For n i.nc , the final
winding number is always smaller than the initial one. B
increasingn i a minimum onn̄ f is always observed and the
n̄ f tends to a constant value. Figure 6 also shows the w
ing number associated with one of the two Fourier modes
fastest growth obtained from the linear stability analysis
the initial traveling wave. The one shown is the lowest; t
other one starts atn̄ f528 and increases further. Obvious
they do not determine the final state in a direct way. This
consistent with the observation mentioned above that
winding number instability does not develop directly fro
the linear instability of the traveling wave, but from a lat
nonlinear competition regime.

As stated in the Introduction, a powerful way of distin
guishing true phase transitions from effective ones is
analysis of finite-size scaling@35#. We have tried to analyze
size effects from the point of view ofn as an order param
eter. In the DT state such an analysis was performed in@41#.
Egolf showed that the distribution of the values taken by
ever-changing winding number is a Gaussian function
width proportional toAL. This is exactly the expected be
havior for order parameters in disordered phases. In the t
modynamic limit the intensive version of the order parame
n/L would tend to zero so that the disordered DT phase
the thermodynamic limit is characterized by a vanishing
tensive order parameter. For the PT states to be true dis
phases, the existence of a nonvanishingnc such thatn is

FIG. 6. Final averaged winding number (n̄ f) as a function of
the initial onen i . The initial condition is a TW with winding num-
ber n i for c152.1 andc2520.8. The dashed line corresponds
the lowest of the two Fourier modes of fastest growth in the lin
regime as a function ofn i .
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156 56R. MONTAGNE et al.
constant forunu,nc is not enough. The range of stable win
ing numbers should also grow at least linearly withL for this
range to have any macroscopic significance. The analys
the growth ofnc with system size has been performed
points c152.1,c2520.8 andc151.96,c2520.83 of pa-
rameter space.nc , determined as explained before, is plott
in Fig. 7 for several system sizes for which the statisti
sample of 50 runs was collected for eachn i .

There is a clear increase, close to linear, ofnc as a func-
tion of L, thus indicating that for this range of system siz
the range of allowed winding numbers is an extensive qu
tity and then eachn is a good order parameter for classifyin
well defined PT phases. It should be noted, however, tha
the larger system size for which extensive statistics was
lected (L52048) data seem to show a tendency towa
saturation. Thus our study should be considered as incon
sive, and larger systems sizes need to be considered.

III. DIFFERENT ASYMPTOTIC STATES
IN THE PT REGION

Typical configurations of the PT state of zero windin
number consist of pulses in the modulusuAu, acting as phase
sinks, that travel and collide rather irregularly on top of t
k50 unstable background wave~that is, a uniform oscilla-
tion! @7,12#. The phase of these configurations strongly
sembles solutions of the Kuramoto-Shivashinsky~KS! equa-
tion. Quantitative agreement has been found between
phase of then50 PT states of the CGLE and solutions of t
KS equation near the BFN line@16#.

For states withnÞ0 a typical state@12# is the one in
which an average speed~in a direction determined by th
sign ofn) is added to the irregular motion of the pulses. W
have found that in addition to these configurations there
other attractors in the PT region of parameters. We h
identified @10# three basic types of asymptotic states forn
Þ0, which we describe below. Other states can be descr
in terms of these basic ones. Except when explicitly sta
all the configurations described in this section have b
obtained by running for long times Eq.~1! with the initial

FIG. 7. Critical winding number (nc) as a function of the length
L of the system. Different symbols correspond
c152.1 andc2520.8 (n) and c151.96 andc2520.83 (L).
The straight lines are linear fits to the two sets of data.
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conditions described before, which is a small random Gau
ian noise added to an unstable traveling wave. The wind
number of these final states is constant and is reached af
transient period in which the winding number might ha
changed.

Figures 8, 9, and 11 show examples of the basic st
that we callriding PT ~Fig. 8!, quasiperiodic states~Fig. 9!,
andfrozen turbulence~Fig. 11!. In each figure panel~a! cor-
responds to a gray scale space-time plot of]xw(x,t), panel
~b! shows the value of this quantity and the modulus of
field (uAu) as a function of position at the time indicated b
an arrow in panels~a! and ~d!, panel~c! shows the spatia
power spectrumS(q,t) of A(x,t) for the same time, and
finally, panel ~d! shows the quantityW5* u] tS(q,t)udq,
which is a global measure of the temporal change in
spatial power spectrum.

The riding PTstate~see Fig. 8! is the most familiar one
@12#: wiggling pulses in the gradient of the phase with
systematic drift in a direction determined byn. The modulus
of the field consists of a disordered spatial sequence of s
pulses and shocks, withA(x,t) always far from zero. The
spatial power spectrumS(q) has a peak corresponding to th
global wave number k̄ ~associated in this case wit
n521, so that k̄52pn/L520.012) and a broad back
ground associated with the turbulent motion ‘‘riding’’ on th
traveling wave. The time evolution ofW shows a decay to-
wards a fluctuating nonzero value, indicating that the pow
spectrum is continuously changing in time as correspond
the turbulent state reached by the system.

Quasiperiodic states~an example is shown in Fig. 9! can
be described as the motion of equidistant pulses in the
dient of the phase that travel at constant speed on top of
background wave. The fact that the periodicity of the puls
and that of the supporting wave are not the same justify
name ofquasiperiodic. We show later that these states co
respond to the ones described in Ref.@13#. In Fig. 9~a!, the
modulus uAu and the gradient of the phase clearly exhi
uniformly traveling pulses. The spatial power spectru
S(q) @Fig. 9~c!# clearly shows the quasiperiodic nature
this state: a central peak, corresponding to the dominant t
eling wave, with equally spaced peaks surrounding it, sho
ing the periodicity of the pulses. The peaks are not sh
because this configuration has been obtained from a ran
perturbation. The decrease ofW in Fig. 9~d! indicates that
the peaks are narrowing. Its asymptotic approach to z
indicates that the amplitudes of the main modes reac
steady value andS(q) becomes time independent.

More perfect quasiperiodic configurations can be obtain
from initial configurations that are already quasiperiod
Figure 10 shows the quantityW for a state generated a
c152.1 andc2520.6 from an initial traveling wave with a
sinusoidal perturbation. The initial traveling wave ha
n i518 and the winding number of the sinusoidal perturb
tion wasn522. The traveling wave decayed to a state w
n f510 of the quasiperiodic type, cleaner than before. T
spatial power spectrum~shown in the inset at the time indi
cated by an arrow in the main picture! shows the typical
characteristics of a quasiperiodic state.

The frozen turbulencestate~see Fig. 11! was described in
@10#. It consists of pulses in]xw traveling at constant spee
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FIG. 8. ~a! Spatiotemporal
evolution of]xw(x,t). The lighter
gray corresponds to the maximum
va,lue of ]xw(x,t) and the
darker gray to the minimum. The
last 2000 time units of a run 104

time units long are shown for a
riding PT state at c152.1 and
c2520.83. The initial condition
was a TW with n i520 that de-
cayed to n f521 after a short
time. ~b! Snapshot of uA(x,t)u
and ]xw(x,t) as a function ofx
for t58900, which is indicated by
an arrow in~a! and~d!. ~c! Spatial
power spectrumS(q) as a func-
tion of the wave number at the
same timet58900.~d! Time evo-
lution of the quantityW defined in
the text. The dashed line indicate
the initial time for ~a!.
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on a traveling wave background, as in the quasiperiodic c
but now the pulses are not equidistant from each other@see
Fig. 11~b!#. The power spectrum at a given time is qu
different from the one of a quasiperiodic state. It is simi
instead to the power spectrum obtained in theriding PT
state:S(q) is a broad spectrum in the sense that the inve
of the width, which gives a measure of the correlation leng
is small compared to the system size. Here, howeverW
relaxes to zero, so that the power spectrum finally st
changing~thereby the namefrozen!. This behavior is an in-
dicator of the fact@10#, obvious from Fig. 11, that the patter
approaches a state of rigid motion for the modulation
modulus and gradient of the phase of the unstable ba
ground plane wave. That is, the fieldA(x,t) is of the form

A~x,t !5g~x2vt !ei [kx2vkt1a~ t !] , ~4!

whereg is a uniformly translating complex modulation fa
tor. It is easy to see that configurations of the form~4! have
a time-independent spatial power spectrum. Torcini@31# no-
ticed in addition that the functiona(t) is linear in t so that
the solutions are in fact of the form

A~x,t !5 f ~x2vt !ei ~kx2vt !, ~5!
e,

r

e
,

s

k-

where againf (x2vt) is a complex-valued function andv
can differ fromvk . f andg differ only in a constant phase
The envelopesg(x2vt) or f (x2vt) turn out to be rather
irregular functions in the presentfrozen turbulencecase,
whereas they are periodic in the quasiperiodic configurati
discussed above.

After presenting the basic states, we continue addres
some interesting mixed states that can be described in te
of them. Most of the configurations ending up in the froz
turbulence or in the quasiperiodic states have long-time tr
sients of the riding turbulence type. A decay to rigid prop
gation occurs only at long times. There are cases in whic
different type of decay happens. For example, Fig. 12 sho
a case in which the system jumps from a very strong rid
turbulence regime to another state, also of the riding tur
lence type, but much more regular. The quantityW, shown in
Fig. 12~b!, turns out to be a valuable tool in distinguishin
the different regimes: A superficial look at Fig. 12~a! could
be easily misunderstood as indicating the approach of
system towards a frozen turbulence state, but the lack
decay towards zero ofW identifies the final state as ridin
turbulence. The arrows indicate the jump to the second s
Figure 13 shows a state characterized by a recurrence
tween two different riding turbulence states, showing a k
of temporal intermittency.
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FIG. 9. Same as in Fig. 8, bu
for the last 35 000 time units of a
run 105 time units long for a qua-
siperiodic state. The initial condi-
tion is random noise with an am
plitude of 0.05. c152.0 and
c2520.8. ~b! and ~c! correspond
to a timet583104.
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Finally, Fig. 14 shows a riding turbulence state with ze
winding number. This is not, however, a typical configur
tion since usually forn50 there is no preferred direction fo
the pulses to drift, whereas the figure shows that in fact th
is a local drift at some places of the system. It turns out t
this state can be understood as composed by two domai
different local winding number:n51 and n521, so that
globally n50. The pulses travel either in one direction or
the other, depending on the region of the system in wh
they are. In Fig. 14~b! a snapshot of the gradient of the pha
]xw(x,t) and the phase itselfw(x,t) is shown. Lines show-
ing the average trend in the phase are plotted over the ph
clearly identifying the two regions in the system. This coe
istence of the different basic states at different places
space, or at different times as in Fig. 13, was already m
tioned in @11#, where it was argued to give rise to a kind
spatiotemporal intermittent behavior.

Given the large variety of configurations that are obser
and the very long transients before a jump from one stat
another occurs, it would be difficult to conclude from n
merical evidence alone that the three kinds of states con
ered asbasicabove are true asymptotic states. Some ana
cal insight would be desirable to be sure that these th
states are attractors of the dynamics. The next section is
voted to providing such an analytical justification.
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IV. ASYMPTOTIC STATES IN TERMS
OF THE PHASE DYNAMICS

The question whether or not it is possible to describe
PT regime of the CGLE from a closed equation for the ph

FIG. 10. ~a! Time evolution ofW for a quasiperiodic state. The
initial condition is a TW sinusoidally perturbed fo
c152.1 andc2520.6. Shown in the inset is the spatial pow
spectrumS(q) as a function of the wave number at timet58900,
indicated by an arrow in the main picture.
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FIG. 11. Same as in Fig. 9, bu
for last 2500 time units of a run
104 time units long for a frozen
turbulence state. The initial condi
tion was a TW ofn i512 that de-
cayed ton f56 after a short time.
c151.75 andc2520.8. The time
of ~b! and ~c! is t58900, indi-
cated by an arrow as in previou
figures.

FIG. 12. ~a! Spatiotemporal
evolution of]xw(x,t) for a riding
turbulence state that decays on
another one. c152.5 and
c2520.75. The initial condition
was a TW ofn i520 that decayed
to n f522 in a short time.~b!
Time evolution ofW. The dashed
lines indicate the time interva
shown in ~a! ~from t152500 to
t256500 of a run 105 time units
long!. The arrow indicates the
transition from one of the riding
turbulence regimes to the othe
one.
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FIG. 13. ~a! Spatiotemporal
evolution of]xw(x,t) showing in-
termittency between riding turbu
lence states. c152.1 and
c2520.83. The initial condition
is a TW of n i51 that did not
change.~b! Time evolution ofW.
The dashed lines indicate the tim
interval shown in ~a! ~from
t151000 to t258500 of a run
104 time units long!. The arrows
indicate the end of a riding turbu
lence regime and the beginning o
another one.
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alone has been posed by several authors@15,16,30,42,43#. A
phase equation is obtained by considering a long-wavele
perturbation of a plane-wave solution in the CGLE~1!. It is
clear that this phase equation will only describe phase
namics close to the homogeneous plane wave~that is, the
one withn50) if the perturbation is made around the sp
tially homogeneous solution. In order to get a description
PT atnÞ0 the expansion should be done for a perturbat
on a traveling wave solution with wave number (k) different
from zero,

A5@A12k21a~x,t !#ei [kx1f~x,t !] . ~6!

Here k is taken ask5(2p/L)n. If A satisfies periodic
boundary conditions, the same conditions apply tof because
any global phase winding is included ink ~the total phase is
w5kx1f). From general symmetry arguments the gene
phase equation forkÞ0 should read, up to fourth order i
gradients,

] tf5V02vg]xf2D2]x
2f1D11~]xf!21D3]x

3f

1D12~]xf!~]x
2f!2D4]x

4f1D13~]xf!~]x
3f!

1D22~]x
2f!21D112~]xf!2~]x

2f!1•••. ~7!

When vg5D35D125D135D225D11250, Eq. ~7! reduces
to the KS equation@44,45# that is the lowest-order nonlinea
phase equation for the casek50. For kÞ0, Eq. ~7! was
systematically derived up to third order in gradients in@36#.
An easy way of obtaining the values of all the coefficients
Eq. ~7! was discussed in@46#. First, V0 is related to the
frequency of the plane-wave solutions

V052vk52c22~c12c2!k
2. ~8!

Second, the linear terms can be obtained from the eigenv
l(k,q) corresponding to the phaselike branch in the lin
stability analysis of the wave of wave numberk with respect
to perturbations of wave numberq @13,14,36,26#:
th

y-

-
f
n

l

ue
r

l~k,q!52 ivgq1D2q
22 iD 3q

32D4q
41O~q5!, ~9!

with

vg52k~c12c2!, ~10!

D252~11c1c2!1
2k2~11c2

2!

12k2
, ~11!

D35
2k~11c2

2!@2c11~c112c2!k
2#

~12k2!2
, ~12!

D45
1

2~12k2!3
$c1

2~11c2
2!22k2~11c2

2!~c1
216c1c2!

1k4@41~11c2
2!~c1

2112c1c2!1c2
2~24120c2

2!#%.

~13!

Third, the nonlinear terms can be obtained from the follo
ing consistency relationship: If Eq.~6! is an exact solution
of the CGLE, thenf(x,t) satisfies the phase equatio
with coefficients depending onk. In addition, if @A12k1

2

1a1(x,t)]e
i [k1x1f1(x,t)] is another exact solution o

the CGLE, thenf1(x,t) satisfies a similar phase equ
tion, but with coefficients depending onk1 instead ofk.
But this solution can be written as @A12k1

2

1a1(x,t)]e
i [kx1(k12k)x1f1(x,t)] so that (k12k)x1f1(x,t) is

also solution of the phase equation with coefficients depe
ing onk ~with different boundary conditions!. By combining
the two equations satisfied byf1 and expanding the coeffi
cients depending onk1 as a power series aroundk ~assuming
k12k small! the following relationships between linear an
nonlinear terms are obtained:
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FIG. 14. ~a! Spatiotemporal
evolution of]xw(x,t). The time in-
terval corresponds to 5500–750
time units of a run 104 time units
long for a riding PT state at
c152.1 andc2520.83. The initial
condition was a TW withn i50
that did not change.~b! Snapshots
of w(x,t) and ]xw(x,t) as a func-
tion of x at the timet56980 indi-
cated by an arrow in~a! and ~d!
dashed lines in the graph o
w(x,t) indicate average slopes
that is, ‘‘local’’ wave numbers.~c!
Spatial power spectrumS(q) as a
function of the wave number at th
same timet56980. ~d! Time evo-
lution of W. Dashed lines indicate
the time interval of~a!.
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D1152
1

2

]vg
]k

, D1252
]D2

]k
,

D135
]D3

]k
, D11252

1

2

]2D2

]k2
, ~14!

so that

D115c22c1 , ~15!

D1252
4k~11c2

2!

~12k2!2
, ~16!

D135
2~11c2

2!

~12k2!3
@2c116c2k

21~2c21c1!k
4#, ~17!

D11252
2~11c2

2!~3k211!

~12k2!3
. ~18!

The coefficientD22 is only obtained following the method t
higher order ink12k. The coefficients up to third order in
gradients can be found also in@36# and approximate expres
sions for them are given in@13#.
The traveling wave of wave numberk becomes unstable
when the coefficientD2 becomes positive. One expects th
the first terms in the gradient expansion~7! give a good
description of the phase dynamics in the weakly nonlin
regime, that is,D2 positive but small~note that for a given
kÞ0 this includes part of the region below the BFN line
Fig. 1!. The arguments presented in@46# imply that the rela-
tive importance of the different terms in a multiple-scale e
pansion in whichD2 is the small parameter can be esta
lished by consideringf;]x;D2

1/2. Then the dominant
terms close to the instability of wavek are the ones contain
ing V0 andvg . After them, the terms with coefficientsD3

andD11 are the most relevant. Up to this order Eq.~7! is a
Korteweg–de Vries equation~KdV!. The terms withD2,
D4, andD12 appear at the next order. The importance of t
terms inD2 andD4 for a qualitatively correct description o
phase dynamics is obvious since they control the stab
properties of the wave of wave numberk. The importance of
the term with coefficientD12 was stressed in@13,47#: If it is
large enough it can change the character of the bifurca
from supercritical to subcritical.

The detailed comparison of the reduced dynamics~7! with
the complete CGLE phase dynamics is beyond the scop
the present paper. The aim of this section is to use Eq.~7!
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just to get some understanding of the asymptotic states
sented in Sec. III. To this end we will use the detailed res
available from the work of Changet al. @48#. These results
are obtained for the so-called Kawahara equat
@49,50,47,48,51#, which is Eq. ~7! with D125D13
5D225D11250. The termD12, which according to Kura-
moto estimations@46# is of the same order for smallD2 as
the terms inD2 andD4, will thus be neglected. It would be
certainly necessary to consider the modifications introdu
by the termD12 into the results of@48#. This will be briefly
discussed at the end of this section. At this point it is int
esting to note that, to our knowledge, the only quantitat
comparison of the phase dynamics withkÞ0 obtained from
a phase equation and from CGLE is the one found in@31,32#.
But the phase equation used in these references is the
presented in@42#, in which the nonlinear terms considere
are only those with coefficientsD11 andD13. In addition,
D11,D13, and the coefficients of the linear terms are cons
ered only up to first order ink. Despite these limitations, in
particular the absence of theD12 term, the phase equation
found to reproduce well the phase dynamics of the CGLE
agreement that degrades when the term inD13 is suppressed
@52#. Clearly, further work is needed to establish firmly t
relevance of the different terms in Eq.~7! @53#. Our study
will be restricted to the situation of@48# ~that is,
D125D225D135D11250) since no study of comparable d
tail for a more complete equation is available in the lite
ture.

The situation of interest here is the one in which the tr
eling waves are unstable against a finite band of wave n
bers, so thatD2 ,D4.0. Making the following changes o
variables in Eq.~7! with D125D225D135D11250:

x5AD2

D4
~x2vgt !,

t5
D2
2

D4
t,

u~x,t!52
D11D4

1/2

2D2
3/2 ]xf~x,t !, ~19!

the Kawahara equation@49,50,47,48,51# is obtained

]tu52]x
2u24u]xu2d]x

3u2]x
4u, ~20!

with

d52
D3

AD2D4

. ~21!

Sincef is periodic inx, u(x,t) is periodic inx. In addition,
*0
Lu(x,t)dx50. To have some intuition of the meaning
the parameterd, its expansion at smallk reads

d'2A2ksgn~c1!A 11c2
2

u11c1c2u
1O~k3!. ~22!

It should be noted thatd does not diverge at the BFN line, a
the expansion~22! seems to suggest, but below it. From E
e-
s

n

d

-
e

ne

-

n

-

-
-

.

~21! it is clear thatd diverges whereD2 vanishes, indicating
that the corresponding traveling wave of wave numberk has
become Eckhaus unstable.

The Kawahara equation~20! has been considered in th
context of surface waves on fluid films falling down an i
clined or vertical plane@54# and also as a simple generaliz
tion of the KS or the KdV equations@49,50#. It has also been
considered in the context of growth shapes@55#. It reduces to
a KS equation ford50 ~or, equivalently, fork50) when
written for the original variablew.

Equation~20! has periodic, solitonlike, spatially irregula
and spatiotemporally chaotic solutions@49–51#. In fact, all
of these solutions have been analytically shown to exist@48#.
All of them except the isolated solitonlike solution@56# are
stable in some parameter regimes@48#. These kinds of solu-
tions should manifest themselves~provided the approximate
phase description holds! in the time evolution of the phas
gradient]xw (5k1]f) of the solutions of the CGLE~1! in
the PT regime. The analytical results in@48# thus provide a
firm basis for the true existence of the numerically observ
states described in Sec. III.

The detailed bifurcation analysis in@48# also gives de-
tailed predictions for the wound states of the CGLE, with
the range of validity of the phase description. We will repr
duce here some of the results in@48# and reinterpret them in
terms of the gradient of the phase of CGLE solutions. O
interest is centered in the rigidly moving train of pulses~fro-
zen turbulence and quasiperiodic states! observed in severa
of the numerical simulations reported in Sec. III. They are
the form ~5!, and because of Eq.~19! we have

u~x,t!5H~j!, ~23!

with j5x2vt, v being the velocity of the train of pulses w
want to describe in units ofx andt. The partial differential
equation~20! is reduced to an ordinary differential equatio
~ODE! for H(j):

Hiv1dH-1H914HH82vH850. ~24!

The primes denote differentiation with respect toj. After an
integration

H-1dH91H82vH12H25Q. ~25!

Q is fixed in a nontrivial way by the condition*H dj50,
which follows from our periodic boundary conditions. Th
third-order ODE can be rewritten as a three-dimensional
namical system

u185u2 ,

u285u3 ,

u385cu12u22du322~u1!
2, ~26!

with

u1~j!5H~x!2
v
4

1Ac2

16
1
Q

2
,

c5A8Q1v2. ~27!
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FIG. 15. Schematic relation
ship between trajectories of th
dynamical system~26! in phase
space~left column! and solutions
u(x,t)5H(j5x2vt) of Eq.
~20! ~right column!. ~a1! Fixed
point of Eq.~26! and~a2! uniform
solution of Eq. ~20! @traveling
wave in the CGLE~1!#. ~b1! Peri-
odic solution~limit cycle! of Eq.
~26! and ~b2! periodic train solu-
tion of Eq. ~20! @quasiperiodic so-
lution of the CGLE~1!#. ~c1! Ho-
moclinic trajectory of Eq.~26! and
~c2! single pulse of Eq.~20!. ~d1!
Chaotic trajectory of Eq.~26! and
~d2! spatially irregular solution of
Eq. ~20! ~frozen turbulence in the
CGLE!.
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Different qualitative behaviors in phase space of the so
tions of the dynamical system~26! are related to the shape o
the solutions of Eq.~24! @57#. This is illustrated in Fig. 15.

We stress that all the solutions of Eq.~24! represent uni-
formly translating solutions of Eq.~20!. No information is
given on more complicated solutions of Eq.~20!. The left
column of Fig. 15 shows the possible trajectories of the
namical system~26!, while the right column shows the cor
responding solution of Eq. ~25! or equivalently,
u(x,t)5H(j5x2vt) in Eq. ~20!. For a fixed point in Eq.
~26! @Fig. 15~a1!# we get a homogeneous solution in Eq.~20!
@Fig. 15~a2!# and @via Eq. ~19!# a traveling wave solution in
the CGLE ~1!. For a periodic trajectory in Eq.~26! @Fig.
15~b1!# we get a train of periodic pulses in the solution
Eq. ~20! @Fig. 15~b2!# and a quasiperiodic solution in CGL
~1!. An homoclinic trajectory in Eq.~26! @Fig. 15~c1!# cor-
responds to a single pulse solution in Eq.~20! @Fig. 15~c2!#.
Finally, for a chaotic trajectory in Eq.~26! @Fig. 15~d1!# we
have an irregular solutionH(j) that corresponds to a rigidly
traveling spatially irregular solution of Eq.~20! @Fig.
15~d2!#. The chaotic solutions of Eq.~26! are of the
Shil’nikov type@48#. This means that the disordered config
-

-

-

rationsH(j) ~and thusu and]xw) consist on nearly identica
pulses that are irregularly spaced. This corresponds to
state namedfrozen turbulencefor solutions of the CGLE.

The detailed analysis of@48# is done, on the one hand, b
following the sequence of bifurcations of the state in whi
H is a constant and of the state in whichH is close to the
KdV soliton @with adequate rescaling Eq.~20! reduces to the
KdV in the limit d→`#. On the other hand, the powerfu
global theorems of Shil’nikov and their generalizations@58–
61# are used to establish the structure of the solutions of
~26!. The results of@48# relevant to our purposes can b
summarized as follows.

~i! Periodic solutions of Eq.~26! exist for all values of
d provided ucu.udu. They are organized in a variety o
branches. Solutions in the same branch differ by their p
odicity and each branch ends in a different kind of solita
wave solution~infinite spatial period!. The shape of the dif-
ferent solitary wave solutions characterizes the differ
branches.

~ii ! For udu*1.1 only one of the branches of periodic s
lutions ~themain branch! remains.
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~iii ! Chaotic solutions to Eq.~26! exist only for
udu&0.84.

~iv! Periodic solutions in the main branch with its wa
number within a given range are linearly stable for alld. A
more precise determination of the range of stable wave n
bers for larged was performed in@47#.

~v! In addition to the periodic solutions there are al
spatiotemporal chaotic attractors for alld.

~vi! If udu.1.1, only two of these strange attractors r
main. Forudu.3 their basin of attraction seems to be mu
smaller than the one of the periodic solutions.

Results~i!–~iii ! can be read off from Fig. 3 of Ref.@48# and
refer to analytical results of rigidly traveling waves;~iv!–~vi!
correspond to numerical and analytical results in the sa
reference without the restriction to rigidly traveling waves

Expression~21! with Eqs. ~10!–~18! gives the relation
betweend and the parameters of the CGLE.udu5` corre-
sponds in Fig. 1 to the line at which the wave of wave nu
berk becomes Eckhaus unstable. It is approximately para
and below the BFN line. The other lines of constantd, for
fixed k, are also approximately parallel to the BFN line, a
decreasingudu corresponds to entering into the PT region a
going deep into it. All these lines concentrate on the B
line as k approaches zero: Fork50, d50 except on the
BFN line 11c1c250, whered is undefined. We now re
phrase the conclusions above in terms of the three b
asymptotic states of the CGLE in the PT regime. They w
be valid as long as the phase description~20! remains accu-
rate.

~i! There are PT solutions of the quasiperiodic type for
values of the parameters~as long as the phase descriptio
remains valid!. Bounds on their velocity can be obtained
principle, but this is nontrivial sinceQ is only known in an
implicit way.

~ii ! Increasingudu by approaching the Eckhaus instabili
for a givenk (D250) or by increasing the winding numbe
reduces the variety of quasiperiodic solutions.

~iii ! Frozen turbulence solutions exist only forudu&0.84,
which is far enough from the lineD250 or for small enough
winding number.

~iv! There are linearly stable solutions in the main qua
periodic branch for all values of the parameters.

~v! There are also riding turbulence attractors for all v
ues of parameters.

~vi! For udu.3, that is, at high winding number or clos
enough to lineD250, the quasiperiodic solutions have
basin of attraction larger than the riding turbulence ones

A general feature of these conclusions is that the imp
tant quantity isD2, which is the distance in parameter spa
from the line at which thek wave became Eckhaus unstab
This line is below the BFN line for kÞ0. Thus, not only
traveling waves, but also quasiperiodic, frozen turbulen
and riding turbulence attractors should exist below the B
line for kÞ0. In practice it is relatively easy to find quas
periodic states below but close to the BFN line, but we ha
been unable to find the other two states so far. The difficu
in finding riding turbulence states can be a consequenc
the small range of winding numbers for which they are sta
(unu5Luku/2p,nc) so that the observability conditio
udu,3 immediately brings us above the BFN line. Anoth
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possibility is that the instability of then50 plane-wave at-
tractor at the BFN line has consequences of a global cha
ter beyond the validity of the phase description.

The above predictions imply that the more promisi
zone for obtaining quasiperiodic solutions starting from ra
dom perturbations on a traveling wave of given windi
number is for parameter values close to and aboveD250 or
for high winding number (udu.3). In any case, no frozen
turbulence should be observed in that zone.

Some qualitative aspects of the conclusions above h
been shown to be correct. In particular Torcini and collab
rators @31,32# have shown that the average maxim
Lyapunov exponent, quantifying the proportion of initi
conditions that fall into the spatiotemporal chaotic stran
attractors, is a decreasing function ofn.

Our numerical solutions also agree with the predicti
that quasiperiodic solutions show up more easily for sm
D2. However, their basin of attraction appears to be mu
smaller than that implied by the conclusions of the pha
description since it is reached with very low probability fro
our initial conditions. This is especially true above the BF
line. The reason for this is probably the effect of the n
glected termD12, which is known to reduce the range o
stable periodic solutions@47# and even to eliminate it by
making the bifurcation subcritical@13#. Above the BFN line
the attractor that we observe more frequently at high wind
number from our initial conditions is the frozen turbule
state.

A more detailed analysis of the predictions above wo
be desirable. This is, however, beyond the scope of
present paper since a detailed theoretical analysis of the
bal properties of the phase space for the equation contai
the termD12 would probably be needed beforehand. A pro
ising alternative can be the study of the exact equation
f (x2vt) in Eq. ~5! obtained in@32#.

V. FINAL REMARKS

One-dimensional wound-up phase turbulence has b
shown to be much richer than the casen50. The main re-
sults reported here, that is, the existence of winding num
instability for phase turbulent waves, the identification of t
PT-DT transition with the vanishing of the range of stab
winding numbers, and the coexistence of different kinds
PT attractors, should in principle be observed in systems
which PT and DT regimes above a Hopf bifurcation a
known to exist@24#. To our knowledge, there are, so far, n
observations of the ordered PT states described above. T
are, however, experimental observations of what seems t
an Eckhaus-like instability for irregular waves in the print
instability system@62#. This suggests that the concept of
turbulent Eckhaus instability can be of interest beyond
range of situations described by the CGLE. A point abo
which our study is inconclusive is the question of the ex
tence of PT in the thermodynamic limit. The identification
n as an order parameter identifies the continuation of Fig
towards larger system sizes as a way of resolving the q
tion. It should be noted, however, that although in comm
phase transitions a linear scaling of the order parameter
system size is usual, phase transitions~as the present one! in
which ergodicity, rather than a simple symmetry of the d
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ordered phase, is broken generate usually a number o
dered phases growing exponentially withL, not just linearly
@34,63#. In this direction we note that the results of Sec.
show that the states of a givenn are not reallypure phases,
but different attractors are possible for givenn. An order
parameter more refined thann should be able to distinguis
between the different attractors and the result of an expon
tially large number of phases at largeL would probably be
recovered. The results presented in Sec. IV give a justifi
tion for the existence of the several wound states obse
and specific predictions have been formulated on the bas
previous analytical and numerical results. Further work
needed, however, to clarify the importance of the differ
terms in Eq.~7! and the validity of a phase description.
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APPENDIX: NUMERICAL INTEGRATION SCHEME

The time evolution of the complex fieldA(x,t) subjected
to periodic boundary conditions is obtained numerically fro
the integration of the CGLE in Fourier space. The method
pseudospectral and second-order accurate in time. Each
rier modeAq evolves according to

] tAq~ t !52aqAq~ t !1Fq~ t !, ~A1!

whereaq is (11 ic1)q
221 andFq is the amplitude of mode

q of the nonlinear term in the CGLE. At any time, the am
plitudes Fq are calculated by taking the inverse Four
transformA(x,t) of Aq , computing the nonlinear term in
real space, and then calculating the direct Fourier transf
of this term. A standard fast Fourier transform subroutine
used for this purpose@64#.

Equation~A1! is integrated numerically in time by using
method similar to the so-called two-step method@65#. For
convenience in the notation, the time step is defined h
such that the time is increased by 2dt at each iteration.

When a large number of modesq are used, the linear time
scalesaq can take a wide range of values. A way of circum
venting this stiffness problem is to treat exactly the line
terms by using the formal solution

Aq~ t !5e2aqtSAq~ t0!e
aqt01E

t0

t

Fq~s!eaqsdsD . ~A2!

From this the following relationship is found:

Aq~ t1dt !

e2aqdt 2
Aq~ t2dt !

eaqdt 5e2aqtE
t2dt

t1dt
Fq~s!eaqsds.

~A3!

The Taylor expansion ofFq(s) arounds5t for small dt
gives an expression for the right-hand side of Eq.~A3!:
r-

n-
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ed
of
s
t
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r

Fq~ t !
eaqdt2e2aqdt

aq
1O~dt3!. ~A4!

Substituting this result into Eq.~A3!, we get

Aq~n11!5e22aqdtAq~n21!1
12e22aqdt

aq
Fq~n!

1O~dt3!, ~A5!

where expressions of the formf (n) are abbreviations for
f (t5ndt). Expression~A5! is the so-called slaved leapfro
of Frisch et al. @66#. To use this scheme the values of th
field at the first two time steps are required. Neverthele
this scheme alone is unstable for the CGLE. This is not
plicitly stated in the literature and probably a corrective
gorithm is also applied. Obtaining such a correction
straightforward: Following steps similar to the ones befo
one derives the auxiliary expression

Aq~n!5e2aqdtAq~n21!1
12e2aqdt

aq
Fq~n21!1O~dt2!.

~A6!

The numerical method we use, which we will refer to
the two-step method, provides the time evolution of the fi
from a given initial condition by using Eqs.~A5! and~A6! as
follows: ~i! Fq(n21) is calculated fromAq(n21) by going
to real space,~ii ! Eq. ~A6! is used to obtain an approximatio
to Aq(n), ~iii ! the nonlinear termFq(n) is now calculated
from thisAq(n) by going to real space, and~iv! the field at
stepn11 is calculated from Eq.~A5! by usingAq(n21)
and Fq(n). At each iteration, we getAq(n11) from
Aq(n21) and the time advances by 2dt. Note that the total
error is O(dt3), despite that the error in the intermedia
value obtained with Eq.~A6! is O(dt2). The method can be
easily made exact for plane waves~2! of wave numberk
~and then more precisely for solutions close to this travel
wave! simply by replacing the nonlinear termFq in Eq. ~A1!
by Fq1(11 ic2)(12k2)Aq and subtracting the correspond
ing term fromaq . We have not implemented this improve
ment because we were mostly interested in solutions cha
ing their winding number, so that they are not close to
same traveling wave all the time.

The number of Fourier modes depends on the space
cretization. We have useddx51 and usuallyN5512. The
time step was usuallydt52dt50.01. The accuracy of the
numerical method has been estimated by integrating pla
wave solutions. The amplitude and frequency of the fi
obtained numerically will differ slightly from the exact am
plitude and frequency, not only due to roundoff errors, b
also due to the fact that the method is approximate. T
method has been tested by using a stationary unstable
eling wave of wave numberk as the initial condition. The
numerical errors will eventually move the solution aw
from the plane-wave unstable state. To be precise, in a t
cal run with c1521.0 and c252.4, with dt50.01 and
k50.123, the amplitude was kept constant to the fifth de
mal digit during;8000 iterations. In comparison, when
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Gaussian noise with an amplitude as small as 1027 is added
to the traveling wave, the modulus is maintained equal to
steady value~up to the fifth decimal! during 1500 iterations.
The frequencyvq determined numerically by using
.

-
of
y

ts
dt50.01 fits the exact value up to the fourth decimal dig

The integration method introduced here has also been
plied successfully to the case of two coupled equations
equivalently, a vectorial CGLE@18,67#.
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